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Minimizing Regret With Label Efficient Prediction
Nicolò Cesa-Bianchi, Gábor Lugosi, Member, IEEE, and Gilles Stoltz

Abstract—We investigate label efficient prediction, a variant,
proposed by Helmbold and Panizza, of the problem of prediction
with expert advice. In this variant, the forecaster, after guessing
the next element of the sequence to be predicted, does not observe
its true value unless he asks for it, which he cannot do too often.
We determine matching upper and lower bounds for the best
possible excess prediction error, with respect to the best possible
constant predictor, when the number of allowed queries is fixed.
We also prove that Hannan consistency, a fundamental property
in game-theoretic prediction models, can be achieved by a fore-
caster issuing a number of queries growing to infinity at a rate
just slightly faster than logarithmic in the number of prediction
rounds.

Index Terms—Individual sequences, label efficient prediction,
on-line learning, prediction with expert advice.

I. INTRODUCTION

PREDICTION with expert advice, a framework introduced
about 15 years ago in learning theory, may be viewed

as a direct generalization of the theory of repeated games, a
field pioneered by Blackwell and Hannan in the mid-1950s.
At a certain level of abstraction, the common subject of these
studies is the problem of forecasting each element of an
unknown “target” sequence given the knowledge of the pre-
vious elements . The forecaster’s goal is to predict
the target sequence almost as well as any forecaster forced to
use the same guess all the times. We call this the sequential
prediction problem. To provide a suitable parameterization of
the problem, we assume that the set from which the forecaster
picks its guesses is finite, of size , while the set to
which the target sequence elements belong may be of arbitrary
cardinality. A real-valued bounded loss function is then used
to quantify the discrepancy between each outcome and the
forecaster’s guess for . The pioneering results of Hannan’s
[1] and Blackwell [2] showed that randomized forecasters exist
whose excess cumulative loss (or regret), with respect to the
loss of any constant forecaster, grows sublinearly in the length

of the target sequence, and this holds for any individual target

Manuscript received September 29, 2004; revised February 17, 2005. The
work of N. Cesa-Bianchi and G. Lugosi was supported in part by the IST Pro-
gram of the European Community under the PASCAL Network of Excellence
IST-2002-506778. The work of G. Lugosi was also supported by the Spanish
Ministry of Science and Technology and FEDER under Grant BMF2003-03324.
An extended abstract of this paper appeared in the Proceedings of the 17th An-
nual Conference on Learning Theory (New York: Springer-Verlag, 2004).

N. Cesa-Bianchi is with the Dipartimento di Scienze dell’Informazione, Uni-
versità di Milano, 20135 Milano, Italy (e-mail: cesa-bianchi@dsi.unimi.it).

G. Lugosi is with the Department of Economics, Universitat Pompeu Fabra,
08005 Barcelona, Spain (e-mail: lugosi@upf.es).

G. Stoltz is with the Département de Mathématiques et Applications, Ecole
Normale Supérieure, 75005 Paris, France (e-mail: gilles.stoltz@ens.fr).

Communicated by P. L. Bartlett, Associate Editor for Pattern Recognition,
Statistical Learning and Inference.

Digital Object Identifier 10.1109/TIT.2005.847729

sequence. In particular, both Blackwell and Hannan found the
optimal growth rate of the regret as a function of the
sequence length when no assumption other than boundedness
is made on the loss . Only relatively recently, Cesa-Bianchi
et al. [3] have revealed that the correct dependence on in the
minimax regret rate is .

Game theorists, information theorists, and learning theorists,
who independently studied the sequential prediction model, ad-
dressed the fundamental question of whether a sublinear regret
rate is achievable in case the past outcomes are
not entirely accessible when computing the guess for . In this
work, we investigate a variant of sequential prediction known
as label efficient prediction. In this model, originally proposed
by Helmbold and Panizza [4], after choosing its guess at time ,
the forecaster decides whether to query the outcome . How-
ever, the forecaster is limited in the number of queries he
can issue within a given time horizon . In the case ,
we prove that Hannan consistency (i.e., regret growing sublin-
early with probability one) can be achieved under the only con-
dition . Moreover, in the finite-
horizon case, we show that any forecaster issuing at most

queries must suffer a regret of order at least
on some outcome sequence of length , and we show a random-
ized forecaster achieving this regret to within constant factors.

The problem of label efficient prediction is closely related
to other frameworks in which the forecaster has a limited
access to the outcomes. Examples include prediction under
partial monitoring (see, e.g., Mertens et al. [5], Rustichini [6],
Piccolboni, and Schindelhauer [7], Mannor and Shimkin [8],
Cesa-Bianchi et al. [9]), the multiarmed bandit problem (see
Baños [10], Megiddo [11], Foster and Vohra [12], Hart and Mas
Colell [13], Auer et al. [14], and Auer [15]), and the “apple
tasting” problem proposed by Helmbold et al. [16].

II. SEQUENTIAL PREDICTION AND THE

LABEL EFFICIENT MODEL

The sequential prediction problem is parameterized by a
number of player actions, by a set of outcomes, and by
a loss function . The loss function has domain
and takes values in a bounded real interval, say . Given
an unknown mechanism generating a sequence of
elements from , a prediction strategy, or forecaster, chooses an
action incurring a loss . A crucial as-
sumption in this model is that the forecaster can choose only
based on information related to the past outcomes .
That is, the forecaster’s decision must not depend on any of the
future outcomes. In the label efficient model, after choosing
the forecaster decides whether to issue a query to access . If
no query is issued, then remains unknown. In other words,
does not depend on all the past outcomes , but only

0018-9448/$20.00 © 2005 IEEE
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Fig. 1. Label efficient prediction as a game between the forecaster and the
environment.

on the queried ones. The label efficient model is best described
as a repeated game between the forecaster, choosing actions,
and the environment, choosing outcomes (see Fig. 1).

The cumulative loss of the forecaster on a sequence
of outcomes is denoted by

for

As the forecasting strategies we consider may be randomized,
each is viewed as a random variable. All probabilities and ex-
pectations are understood with respect to the -algebra of events
generated by the sequence of random choices of the forecaster.
We compare the forecaster’s cumulative loss with those of
the constant forecasters ,

.
In this paper, we devise label efficient forecasting strategies

whose expected regret

grows sublinearly in for any sequence of outcomes,
that is, for any strategy of the environment whenever

. Note that the quantities are random. Indeed,
as argued in Section III, in general, the outcomes may depend
on the forecaster’s past random choices. Via a more refined anal-
ysis, we also prove the stronger result

a.s. (1)

for any sequence of outcomes and whenever
. The almost-sure convergence

is with respect to the auxiliary randomization the forecaster has
access to. Property (1), known as Hannan consistency in game
theory, rules out the possibility that the regret is much larger
than its expected value with a significant probability.

III. A LABEL EFFICIENT FORECASTER

We start by considering the finite-horizon case in which the
forecaster’s goal is to control the regret after predictions,

Fig. 2. The label efficient exponentially weighted average forecaster.

where is fixed in advance. In this restricted setup we also as-
sume that at most queries can be issued, where is
the query rate function. However, we do not impose any further
restriction on the distribution of these queries in the time
steps, that is, for . We introduce a simple
forecaster whose expected regret is bounded by .

It is easy to see that in order to achieve a nontrivial per-
formance, a forecaster must use randomization in determining
whether a label should be revealed or not. It turns out that a
simple biased coin is sufficient for our purpose. The strategy
we propose, sketched in Fig. 2, uses an independent and iden-
tically distributed (i.i.d.) sequence of Bernoulli
random variables such that and
asks the label to be revealed whenever . Here
is a parameter of the strategy. (Typically, we take so
that the number of solicited labels during rounds is about .
Note that this way the forecaster may ask the value of more than

labels, but we ignore this detail as it can be dealt with by a
simple adjustment.) Our label efficient forecaster uses the esti-
mated losses

if
otherwise.

Let and let denote the prefix
of an arbitrary sequence . Then

(2)

(3)

hold for each , where

and

Note that the conditioning on and is necessary be-
cause of the two following reasons: first, depends both on
the past realizations of the random choices of the forecaster

(see the third step in the algorithm of Fig. 2) and on
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the past outcomes ; second, is a function of both
and , as the environment is allowed to determine after
playing the game up to time (see Fig. 1). For technical
reasons, we sometimes consider a weaker model (which we call
the oblivious adversary) where the sequence of out-
comes chosen by the environment is deterministic and indepen-
dent of the forecaster random choices. This is equivalent to a
game in which the environment must fix the sequence of out-
comes before the game begins. The oblivious adversary model is
reasonable in some scenarios, in which the forecaster’s predic-
tions have no influence on the environment. Clearly, any result
proven in the standard model also holds in the oblivious adver-
sary model.

The quantities may be considered as unbiased esti-
mates of the true losses . The label efficient forecaster
of Fig. 2 is an exponentially weighted average forecaster using
such estimates instead of the observed losses. The expected per-
formance of this strategy may be bounded as follows.

Theorem 1: Fix a time horizon and consider the label ef-
ficient forecaster of Fig. 2 run with parameters and

. Then, the expected number of revealed la-
bels equals and

In the sequel, for each , we write

Proof: The proof is a simple adaptation of [17, The-
orem 3.1]. The starting point is the following inequality (see
also [7, Theorem 1]):

Since for all and , the second term on the
right-hand side may be bounded by

and, therefore, we get, for all

(4)
Taking expectations on both sides and substituting the values of

and yields the desired result.

Remark 1.1: In the oblivious adversary model, Theorem 1
(and similarly later Theorems 2 and 10) can be strengthened as
follows. Consider the “lazy” forecaster of Fig. 3 that keeps on
choosing the same action as long as no new queries are issued.
For this forecaster, Theorems 1 and 2 hold with the additional
statement that, with probability , the number of changes of
an action, that is the number of steps where , is at
most the number of queried labels (by construction of the lazy
forecaster). To prove the regret bound, note that we derive the
statement of Theorem 1 by taking averages on both sides of
(4), and then applying (2) and (3). Note that (4) holds for every

Fig. 3. The lazy label efficient exponentially weighted average forecaster for
the oblivious adversary model.

realization of the random variables and .
Therefore, as the lazy forecaster differs from the forecaster of
Fig. 2 only in the distribution of , inequality (4) holds
for the lazy forecaster as well. In the oblivious adversary model,

does not depend on ; thus, by construction,
does not depend on either. Therefore, we can take
averages with respect to obtaining the following
version of (3) for the lazy forecaster:

Since (2) holds as well when the conditioning is limited to
, we can derive for the lazy forecaster the same

bounds as in Theorem 1 (and Theorem 2). Note also that the re-
sult holds even when is allowed to depend on .

A. Bounding the Regret With High Probability

Theorem 1 guarantees that the expected per-round regret con-
verges to zero whenever as . The next re-
sult shows that this regret is, with overwhelming probability,
bounded by a quantity proportional to .

Theorem 2: Fix a time horizon and a number .
Consider the label efficient forecaster of Fig. 2 run with param-
eters

and

Then, with probability at least , the number of revealed
labels is at most and for all

Before proving Theorem 2, note that if , then
the right-hand side of the inequality is greater than and there-
fore the statement is trivial. Thus, we may assume throughout
the proof that . This ensures that

(5)
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We need a number of preliminary lemmas. The first is ob-
tained by a simple application of Bernstein’s inequality (see
Lemma 15).

Lemma 3: The probability that the strategy asks for more
than labels is at most .

Proof: Note that the number of labels
asked by the algorithm is binomially distributed with pa-
rameters and and therefore, writing

, it satisfies

where we used Bernstein’s inequality (see Lemma 15) in the
second step and the definition of in the last two steps.

Lemma 4: With probability at least , for all

Furthermore, with probability at least , for all
and for all ,

Proof: The proofs of both inequalities rely on the same
techniques, namely, the application of Bernstein’s inequality
for martingales combined with Doob’s maximal inequality. We
therefore focus on the first one, and indicate the modifications
needed for the second one.

We introduce the sequence

which is a martingale difference sequence with respect to the
filtration generated by the , . Defining

and the martingale , our goal is to show
that

For all , we note that

so that summing over , we have for all .
We now apply Lemma 15 with , , and

(since with probability for all ). This yields

and

Using implied by the assumption
, we see that , which, combined with (5),

shows that

and this proves the first inequality.
To prove the second inequality note that, by the arguments

above, for each fixed we have

The proof is concluded by a union-of-events bound.

Proof of Theorem 2: When , the bound given
by the theorem is trivial, so we only need to consider the case
when . Then (5) implies that . Thus, a
straightforward combination of Lemmas 3 and 4 with (4) shows
that, with probability at least , the strategy asks for at
most labels and for all

which, since for all , implies for all

by our choice of and using derived from (5).
The proof is finished by noting that the Hoeffding–Azuma in-
equality (for maximal processes, see [18]) implies that, with
probability at least , for all

since .

B. Hannan Consistency

Theorem 1 does not directly imply Hannan consistency of the
associated forecasting strategy because the regret bound does
not hold uniformly over the sequence length . However, using
standard dynamical tuning techniques (such as the “doubling
trick” described in [3]) Hannan consistency can be achieved.
The main quantity that arises in the analysis is the query rate

, that is, the number of queries that can be issued up to time
. The next result shows that Hannan consistency is achievable

whenever .
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Corollary 5: Let be any nondecreasing integer-
valued function such that

Then there exists a Hannan consistent randomized label efficient
forecaster that issues at most queries in the first predic-
tions, for any .

Proof: The algorithm we consider divides time into
consecutive epochs of increasing lengths for

. In the th epoch (of length ) the algo-
rithm runs the forecaster of Theorem 2 with parameters ,

, and , where will be determined
by the analysis (without loss of generality, we assume the
forecaster always asks at most labels in each epoch ). Our
choice of and the Borel–Cantelli lemma implies that the
bound of Theorem 2 holds for all but finitely many epochs.
Denote the (random) index of the last epoch in which the bound
does not hold by . Let be cumulative loss of the best
action in epoch and let be the cumulative loss of the
forecaster in the same epoch. Introduce .
Then, by Theorem 2 and by definition of , for each and for
each realization of and we have

This, the finiteness of , and , imply that with
probability

Cesaro’s lemma ensures that the in the preceding ex-
pression equals zero as soon as . It remains
to see that the latter condition is satisfied under the additional
requirement that the forecaster does not issue more than
queries up to time . This is guaranteed whenever

for each . Denote by the largest non-
decreasing function such that

for all

As grows faster than , we have
that . Thus, choosing and

, we indeed ensure that .
Furthermore, using that is nondecreasing as a function of ,
and using the monotonicity of

and this concludes the proof.

Fig. 4. A doubling version of the label efficient exponentially weighted
average forecaster.

IV. IMPROVEMENTS FOR SMALL LOSSES

We now prove a refined bound in which the factors
of Theorem 2 are replaced by quantities of

the order of in case of an
oblivious adversary, and
in case of a nonoblivious one, where is the cumulative loss
of the best action

In particular, we recover the behavior already observed by
Helmbold and Panizza [4] for oblivious adversaries in the
case .

This is done by introducing a modified version of the fore-
caster of Fig. 2, which performs a doubling trick over the esti-
mated losses , (see Fig. 4), and whose perfor-
mance is studied in the following through several applications
of Bernstein’s lemma.

Similarly to [17, Sec. 4], we propose in Fig. 4 a forecaster
which uses a doubling trick based on the estimated losses of
each action . We denote the estimated accumulated
loss of this algorithm by

and prove the following inequality.

Lemma 6: For any , the forecaster of Fig. 4
achieves, for all

where

Proof: The proof is divided into three steps. We first deal
with each epoch, then sum the estimated losses over the epochs,
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and finally, bound the total number of different epochs (i.e.,
the final value of ). Let and be the first and last time
steps completed on epoch (where for convenience we define

). Thus, epoch consists of trials . We
denote the estimated cumulative loss of the forecaster at epoch

by

and the estimated cumulative losses of the actions
at epoch by

Inequality (4) ensures that for epoch , and for all

so dividing both terms by the quantity (which is
more than due to the choice of ), we get

The stopping condition now guarantees that ,
hence, substituting the value of , we have proved that for
epoch

Summing over , we get

(6)

It remains to bound the number of epochs, or alternatively, to
bound . Assume first that . In particular

so

The above is implied by

which also holds for . Applying the last inequality to (6)
concludes the proof.

We now state and prove a bound that holds in the most general
(nonoblivious) adversarial model.

Theorem 7: The label efficient forecaster of Fig. 4, run with

ensures that, with probability , the algorithm does not ask
for more than labels and for all

where

We remark here that the bound of the theorem is an improve-
ment over that of Theorem 2 as soon as grows slower than

. (For , however, these bounds are worse, at
least in the case of nonoblivious adversary, see Theorem 10
below for a refined bound for the case of an oblivious adversary.)

First, we relate to , and to , where

is the sum of the conditional expectations of the instantaneous
losses, and then substitute the obtained inequalities in the bound
of Lemma 6.

Lemma 8: With probability , the following in-
equalities hold simultaneously for all :

Proof: We prove that each of both lines holds with proba-
bility at least . As the proofs are similar, we concentrate
on the first one only. For all , we apply Corol-
lary 16 with , , which forms
a martingale difference sequence (with respect to the filtration
generated by , ). With the notation of the
corollary, , and is smaller than , which shows
that (for a given ), with probability at least

The proof is concluded by using for
(derived from (5)), , and the

union-of-events bound.

Lemma 9: With probability at least

where is as in Theorem 7.
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Proof: We combine the inequalities of Lemma 8 with
Lemma 6, and perform some trivial upper-bounding, to get
that, with probability , for all

An application of Lemma 19 concludes the proof.

Proof of Theorem 7: Lemma 3 shows that with probability
at least , the number of queried labels is less than .
Using the notation of Corollary 16, we consider the martingale
difference sequence formed by , with
associated sum of conditional variances and incre-
ments bounded by . Corollary 16 then shows that with proba-
bility

We conclude the proof by applying Lemma 9 and a union-of-
events bound.

In the oblivious adversary model, the bound of Theorem 7
can be strengthened as follows.

Theorem 10: In the oblivious adversary model, the label ef-
ficient forecaster of Fig. 4, run with

ensures that with probability , the algorithm does not ask
for more than labels and that

where

Observe that the order of magnitude of the bound of Theorem
10 is always at least as good as that of Theorem 2 and is better
as soon as grows slower than .

The proof of Theorem 10 is based on combining Lemma 6
with two applications of Bernstein’s inequality, but here, one of
these applications is a backward call to Bernstein’s inequality:
usually, one can handle the predictable quadratic variation of the
studied martingale, and Bernstein’s inequality is then a useful
concentration result for the martingale. In the case of the second
step below, we know the deviations of the martingale (formed
by ), but we are interested in the behavior of its predictable
quadratic variation (equal to ). The two quantities are re-
lated by a “backward” use of Bernstein’s lemma.

First Step: Relating Estimated Losses to the Cumulative
Loss of the Best Action: We relate and to by
using Bernstein’s inequality (Lemma 15). First we point out
the difference between oblivious and nonoblivious adversaries.
More precisely, to apply Lemma 15 rather than Corollary 16,
we need upper bounds for all (we excep-
tionally make the dependence on the played outcomes explicit)
which are independent of and . In case of oblivious
adversaries, the outcome sequence is chosen in advance,
and is a suitable choice. This is not the case for
nonoblivious adversaries whose behavior may take the actions
of the forecaster into account (see the previous section).

Observe the similarity of the first statement of the following
lemma to Lemmas 4 and 8.

Lemma 11: When facing an oblivious adversary, with prob-
ability

Consequently, with probability

(7)

where

Proof: For all , we may apply Lemma 15
with , , which forms a mar-
tingale difference sequence with respect to the filtration gen-
erated by , . With the notation of Lemma 15,

, which is indeed independent of the
, and simple algebra and the union-of-events bound conclude

the proof of the first statement. The second statement follows
from a combination of the first one with Lemma 6.

Second Step: Bernstein’s Inequality Used Backward: Next
we relate to (and thus to , via Lemma 11). This is
done by using Bernstein’s lemma (Lemma 15) once again, but
backward.

Lemma 12: For oblivious adversaries, with probability at
least

where is as in Theorem 10.
Proof: Consider as in Lemma 11 and fix a real

number . Recall the function defined in the
statement of Lemma 15. Then (7) and the union-of-events bound
imply that, for such that

and
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(8)

We introduce the martingale difference sequence (with incre-
ments bounded by ) . The conditional
variances satisfy

so that, using the notation of Lemma 15, .
By Lemma 15

for

is a nonnegative supermartingale. Hence, using Doob’s max-
imal inequality, we get

(9)

Now, choose

, and therefore, using for , we
have proved that . Thus, (8) and (9) imply

It suffices to find a such that

One such choice is

Substituting the value of yields the statement of the
lemma.

Third Step: Conclusion of the Proof of Theorem 10: Lem-
ma 3 shows that, with probability at least , the number
of queried labels is less than . We then consider the martin-
gale difference sequence formed by ,
with associated sum of conditional variances and
increments bounded by 1. Lemma 15 yields

provided that . Lemma 12 together with a
union-of-events bound and the choice

concludes the proof.

V. A LOWER BOUND FOR LABEL EFFICIENT PREDICTION

Here we show that the performance bounds proved in
Section III for the label efficient exponentially weighted av-
erage forecaster are essentially unimprovable in the strong
sense that no other label efficient forecasting strategy can have
a significantly better performance for all problems. Denote the
set of natural numbers by .

Theorem 13: There exist an outcome space , a loss function
, and a universal constant such that,

for all and for all , the
cumulative (expected) loss of any (randomized) forecaster that
uses actions in and asks for at most labels while
predicting a sequence of outcomes satisfies the inequality

In particular, we prove the theorem for

Proof: First, we define and . Given ,
we denote by its dyadic expansion, that is, the
unique sequence not ending with infinitely many zeros such
that

Now, the loss function is defined as for all
and .

We construct a random outcome sequence and show that the
expected value of the regret (with respect both to the random
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choice of the outcome sequence and to the forecaster’s pos-
sibly random choices) for any possibly randomized forecaster
is bounded from below by the claimed quantity.

More precisely, we denote by the auxiliary
randomization which the forecaster has access to. Without loss
of generality, this sequence can be taken as an i.i.d. sequence of
uniformly distributed random variables over . Our under-
lying probability space is equipped with the -algebra of events
generated by the random outcome sequence and
by the randomization . As the random outcome se-
quence is independent of the auxiliary randomization, we define

different probability distributions, , ,
formed by the product of the auxiliary randomization (whose
associated probability distribution is denoted by ) and one
of the different probability distributions over
the outcome sequence defined as follows.

For , is defined as the distribution (over
) of

where , , are independent random variables
such that has uniform distribution, and and the have
Bernoulli distribution with parameter for and
for the . Now, the randomization is such that under , the
outcome sequence is i.i.d. with common distribu-
tion .

Then, under each (for ), the losses ,
, , are independent Bernoulli random

variables with the following parameters. For all ,
with probability and with probability
for each , where is a positive number specified below.

We have

where (resp., ) denotes expectation with respect to
(resp. ).

Now, we use the following decomposition lemma, which
states that a randomized algorithm performs, on the average,
just as a convex combination of deterministic algorithms. The
simple proof is omitted.

Lemma 14: For any randomized forecaster there exists an in-
teger , a point in the probability
simplex, and deterministic algorithms (indexed by a super-
script ) such that, for every and every possible
outcome sequence

where is the indicator function that the th deter-
ministic algorithm chooses action when the sequence of past
outcomes is formed by .

Using this lemma, we have that there exist , , and de-
terministic subalgorithms such that

Now, under the regret grows by whenever an action dif-
ferent from is chosen and remains the same otherwise. Hence,

For the th deterministic subalgorithm, let
be the times when the queries were issued. Then

are finite stopping times with respect to the i.i.d.
process . Hence, by a well-known fact in probability
theory (see, e.g., [19, Lemma 2, p. 138]), the revealed outcomes

are i.i.d. as .
Let be the number of revealed outcomes at time and

note that is measurable with respect to the random outcome
sequence. Now, as the subalgorithm we consider is determin-
istic, is fully determined by . Hence, may
be seen as a function of rather than a function of

only. As the joint distribution of

under is , we have proved that

Consequently, the lower bound rewrites as

By the generalized Fano’s inequality (see Lemma 18 in the
Appendix), it is guaranteed that

where

KL

KL
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and KL is the Kullback–Leibler divergence (or relative entropy)
between two probability distributions.

Moreover, denoting the Bernoulli distribution with param-
eter

KL

KL

KL KL

for , where the first inequality holds by
noting that the definition of the implies that the considered
Kullback–Leibler divergence is upper-bounded by the Kull-
back–Leibler divergence between ,
where is in the th position, and .
Therefore,

The choice

yields the claimed bound.

APPENDIX I
BERNSTEIN’S INEQUALITY FOR MARTINGALES

We recall first a version of Bernstein’s inequality suited for
maxima of martingale difference sequences [20], and prove a
corollary tailored to the needs of Section IV.

Lemma 15 (Bernstein’s Maximal Inequality for Martingales):
Let be a bounded martingale difference sequence
with respect to the filtration and with incre-
ments bounded in absolute values by . Let

be the associated martingale. Denote the sum of the conditional
variances by

Then, for all

is a supermartingale (with respect to the same filtration ),
where

In particular, for all constants

and therefore,

Corollary 16: Under the assumptions of Lemma 15, for all
, with probability at least

Proof: Denote

We apply the previous lemma times and use a union-of-events
bound. For

and

and

where we used Lemma 15 in the last step. By boundedness of the
, lies between and , and therefore a union-of-events

bound over concludes the proof.

APPENDIX II
GENERALIZED FANO’S LEMMA

The crucial point in the proof of the lower bound theorem is
an extension of Fano’s lemma to a convex combination of prob-
ability masses, which may be proved thanks to a straightforward
modification of the techniques developed by Birgé [21] (see also
Massart [22]). Recall first a consequence of the variational for-
mula for entropy.

Lemma 17: For arbitrary probability distributions and
for each

where .

Lemma 18 (Generalized Fano): Let

be a family of subsets of a set such that form
a partition of for each fixed . Let be such that

for and . Then, for all
sets , , of probability distributions
on

where

KL
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Proof: Using Lemma 17, we have that

Now, for each fixed , the function that maps to
is convex. Hence, letting

by Jensen’s inequality we get

Recalling that the right-hand side of the above inequality above
is less than , and introducing the quantities

for

we conclude

Denote by the minimum of the ’s and let
. We only have to deal with the case when .

As for all , the function that maps to is decreasing,
we have

whenever for the second inequality to hold, and by
using for the last one. As

whenever , the case may only happen
when , but then the result is trivial.

APPENDIX III
A BASIC FACT

Lemma 19: If and are such that for all

(10)

then

Proof: We obtain a bound over and apply it to (10)
to conclude. The inequality

rewrites as

that is, either or

In both cases

concluding the proof.
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