

Machine Learning, 25, 71–110 (1996)
c© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

On-line Prediction and Conversion Strategies

NICOLÒ CESA-BIANCHI cesabian@dsi.unimi.it
DSI, Universit̀a di Milano, Via Comelico 39,
20135 Milano, Italy.

YOAV FREUND yoav@research.att.com
AT&T Bell Laboratories, 600 Mountain Avenue, Room 2B-428,
Murray Hill, NJ 07974-0636, USA.

DAVID P. HELMBOLD dph@cse.ucsc.edu

MANFRED K. WARMUTH manfred@cse.ucsc.edu
Computer Science Department, University of California,
Santa Cruz, CA 95064, USA.

Editor: Leonard Pitt

Abstract. We study the problem of deterministically predicting boolean values by combining the boolean
predictions of several experts. Previous on-line algorithms for this problem predict with the weighted majority of
the experts’ predictions. These algorithms give each expert an exponential weightβm whereβ is a constant in
[0, 1) andm is the number of mistakes made by the expert in the past. We show that it is better to use sums of
binomials as weights. In particular, we present a deterministic algorithm using binomial weights that has a better
worst case mistake bound than the best deterministic algorithm using exponential weights. The binomial weights
naturally arise from a version space argument. We also show how both exponential and binomial weighting
schemes can be used to make prediction algorithms robust against noise.

Keywords: On-line learning, conversion strategies, noise robustness, binomial weights, exponential weights,
weighted majority algorithm, expert advice, mistake bounds, Ulam’s game.

1. Introduction

This paper studies a simple on-line model where predictions are made in a series of trials.
At each trialt the prediction algorithm receives thetth observationxt and produces a
boolean prediction̂yt. It then receives the correct outcomeyt as feedback. A mistake
occurs if prediction̂yt and outcomeyt disagree. Following Littlestone (Littlestone, 1988),
we seek prediction algorithms that minimize the number of mistakes over a worst case
sequence ofxt andyt. Of course in the unconstrained worst case a mistake can occur
in every trial. In order to make good predictions the predictor needs to have some prior
knowledge that enables it to makes predictions about the future based on the past. In a
Bayesian regression framework, one can encode this knowledge using a prior distribution
over the set of sequences or over a set of sequence models. In this work we are interested
in performance bounds that make no probabilistic assumptions, and so we define the prior
knowledge somewhat differently.

We assume that there areN experts each of which is a prediction strategy. Our goal
is to design an algorithm, which we shall call the “master algorithm”, that combines the

72 N. CESA-BIANCHI, ET AL.

predictions of the experts in the following way. At the beginning of trialt, the master
algorithm feeds the given observation,xt, to all experts. The master then uses some
function of theN predictions produced by the experts to form its own prediction,ŷt. At
the end of the trial the feedback,yt, is shared with all experts. We prove worst-case bounds
on the number of mistakes made by the master when the number of mistakes made by the
best expert is bounded.

Generalizations of the above model, where the predictions of the experts and/or of
the master algorithm may be in the continuous range[0, 1], have been studied by Vovk
(Vovk, 1990), Littlestone and Warmuth (Littlestone & Warmuth, 1994), Cesa-Bianchiet
al. (Cesa-Bianchi, et al., 1995), and Kivinen and Warmuth (Kivinen & Warmuth, 1994). In
this paper we return to the simplest setting where all predictions and outcomes are boolean.
This is the problem solved by the basic Weighted Majority (WM) algorithm (Littleston &
Warmuth, 1994). Here we study the boolean case in more depth and devise a better al-
gorithm that we call the “Binomial Weighting” algorithm or BW. The worst case number
of mistakes that BW makes is smaller than the number of mistakes made by previously
known algorithms. In fact, if the number of experts is large enough and all predictions are
deterministic and boolean, then we show that BW has the smallest possible worst-case mis-
take bound among all master algorithms. In our analysis of BW we explore some elegant
combinatorial structures that might be applicable elsewhere.

The Weighted Majority algorithms cited above attempt to minimize the number of mis-
takes made as a function of the number of mistakes made by the best expert. They assign
to each expert a weight of the formβm, whereβ is a constant in[0, 1) andm is the total
number of mistakes (or more generally the total loss) incurred by the expert so far1. The es-
sential property is that the experts making many mistakes get their weights rapidly slashed.
The WM algorithm uses the weighted average of the experts’ predictions to form its own
prediction: It simply predicts1 if the weighted average is greater than1/2, and0 otherwise.

The new master algorithm BW uses its weights in a similar way to WM for predicting,
however, these weights are not in exponential form. Instead, they are tails of a binomial
sum. A further difference between WM and BW is the following. On each trial WM
predicts 1 if and only if the total current weight of the experts predicting 1 is larger than
the total current weight of the experts predicting 0. BW, instead, predicts 1 if and only if
the total updated weight resulting from the outcome being 1 is larger than the total updated
weight resulting from the outcome being 0.

This binomial weighting scheme is motivated by a version space2 argument. The mistake
bound of the Weighted Majority algorithm approximates the mistake bound of the BW
algorithm in the same way that Chernoff bounds approximate sums of binomial tails. We
show that the gap between the mistake bounds of the Weighted Majority algorithm and our
new algorithm can be arbitrarily large.

Finally, a perhaps subtler difference between exponential weights and our new scheme
is that each expert’s weight in the latter scheme depends not only on the current mistake
count of the expert, but also on the current mistake count of the master.

We show that our algorithm has the best possible worst-case mistake bound when the
number of experts is very large compared to the loss of the best expert. This lower bound
analysis is based on a relation between our prediction problem and Ulam’s searching game

ON-LINE PREDICTION AND CONVERSION STRATEGIES 73

with a fixed number of lies (Spencer, 1992, Ulam, 1977). We also present a second lower
bound argument for our prediction model. This second argument uses a probabilistic
construction to prove that both the BW and the tuned Weighted Majority algorithm are
asymptotically optimal. That is, the ratio between the mistake bound of either algorithm
and the best possible worst case mistake bound goes to 1 as the numberN of experts or
the lossk of the best expert go to infinity. An equivalent lower bound has been previously
obtained by Vovk (Vovk, 1990) using arguments from coding theory.

We use the ideas behind the BW master algorithm to devise a method (which we call a
conversion strategy) to make prediction algorithms robust against noise. The conversion
strategy feeds different feedbacks to several copies of the same prediction algorithm. If the
noise level is low then one copy will get noiseless data, enabling the conversion strategy
to make good predictions. Our upper bound has slightly better constants than the one
independently obtained by Auer and Long (Auer & Long, to appear), and is close to the
lower bound given by Littlestone and Warmuth (Littlestone & Warmuth, 1994).

It remains open whether binomial weights also lead to improved master prediction algo-
rithms for the case when the prediction of the master is allowed to be in the continuous
interval [0, 1]. In this more general setting mistake bounds are replaced by bounds on the
total absolute loss. There are master prediction algorithms for this problem (Vovk, 1990,
Cesa-Bianchi, et al., 1995) using exponential weights, whose mistake bounds are exactly
half of the corresponding mistake bounds in the boolean case. However, our attempts to
construct a continuous prediction algorithm that achieves half (plus possibly a constant) the
loss of the BW algorithm have so far been unsuccessful.

The paper is organized as follows. In Section 2 we present the new algorithm BW, compare
it against WM, and prove general lower bounds. In Section 3 we introduce two conversion
strategies: one based on binomial weights and one based on exponential weights. Section 4
is devoted to conclusions.

Notation.
The setX represents the set of possible observations and{0,1} the two possible outcomes.
We use(X × {0, 1})+ for the set of all finite sequences over(X × {0, 1}) of nonzero length
ands for a sequence〈(xt, yt)〉t (of unspecified length) in(X × {0, 1})+ of observations
and outcomes. LetN denote the natural numbers including 0. The notationsn, for any
n ∈ N, represents either a sequence of lengthn or the lengthn prefix of a longer sequence
s. The correct interpretation will be clear from the context.

An expertis any function mapping(X × {0, 1})∗×X to{0, 1}. In this paper we treat ex-
perts in an on-line fashion. On thetth trial, each expertE makes the predictionE(st−1, xt)
wherext ∈ X is the current observation andst−1 is the sequence of observation/outcome
pairs from the previoust− 1 trials. At the end of the trial the expert is given the feedback
yt ∈ {0, 1} for the current trial (andst for the next trial is created by appending(xt, yt)
to st−1). We say that expertE either is wrong, makes a mistake, or is incorrect when its
prediction at trialt, E(st−1, xt), is different fromyt.

Also, we usedH(y, z) to denote the Hamming distance between any two boolean
sequencesy and z of equal length. For the sum of binomials, we use the notation(
m
≤k
) def=

∑k
i=0

(
m
i

)
for all integersm andk, using the convention

(
m
≤k
)

= 0 whenm

74 N. CESA-BIANCHI, ET AL.

or k negative. We conventionally set
(
m
i

)
= 0 when i > m or when eitherm or i is

negative. We will often make use of the well-known combinatorial identity(
q

≤ i

)
=
(
q − 1
≤ i

)
+
(
q − 1
≤ i− 1

)
(1)

that holds for all nonzero integersq and all integersi. We denote the binary logarithm by
“ log” and the natural logarithm by “ln”. Furthermore, letH(·) denote the binary entropy
function,H(x) = −x log x − (1 − x) log(1 − x), defined for all0 ≤ x ≤ 1 (note that
H(0) = H(1) = 0 andH(1

2) = 1).

2. Master Algorithms for Combining the Predictions of Experts

In this section we introduce a master algorithm that sequentially predicts boolean sequences
by combining the predictions of a set of experts. Throughout the section, we assume that
a boundk on the number of mistakes made on the sequence by the best expert in the set is
available and known to the master algorithm.

For any expertE and for any sequences ∈ (X × {0, 1})+ of instances and outcomes
we denote the number of mistakes (i.e. total loss) of expertE on sequences by LE(s).
Also, if E is a set of experts, we useLE(s) for the minimumLE(s) over the expertsE ∈ E .
We usually make the assumption thatLE(s) ≤ k for some constantk known to the master
algorithm. We point out that our master algorithms are domain independent, using the
information provided by the sequence of instances〈xt〉t only to obtain the predictions of
the experts.

Our goal is to solve the following problem:

Suppose a setE ofN experts is available and the task is to predict in an on-line fashion
the bitsy1, y2, . . . , y` of some sequences = (x1, y1), (x2, y2), . . . , (x`, y`) in a set
of sequencesΣ ⊆ (X × {0, 1})`. Suppose also that an upper boundk on the loss of
the best expert inE is known, i.e. for eachs ∈ Σ, LE(s) ≤ k. How can a master
algorithm combine the experts’ predictions so that its worst case number of mistakes is
minimized?

If the master algorithm knew which expertE ∈ E made onlyk mistakes, then it could
simply predict the same way that expertE does. However, the “good” expert (or experts)
is not known in advance.

In the fortunate case wherek = 0, the master algorithm knows that one of the experts
predicts perfectly ons. In this case the well-known Halving algorithm (Angluin, 1988,
Bardzin & Freivalds, 1972) can be used. On each trial the Halving algorithm predicts the
same way as the majority of those experts that have never made a mistake (the consistent
experts). The number of consistent experts is reduced by at least a factor of two each time
the Halving algorithm makes a mistake, so the master makes at mostlogN mistakes on
anys where one of theN experts always predicts correctly.

We now present a simple master algorithm called the Version Space algorithm that will
be used to motivate the Binomial Weighting (BW) algorithm. To do this we make the

ON-LINE PREDICTION AND CONVERSION STRATEGIES 75

simplifying assumption that the length of the sequence of instances,`, is known as well.
This assumption will be removed shortly.

Since the master algorithm knows that the best expert makes at mostk > 0 mistakes, it
can use the following trick. The master algorithm expands each expert into a set of variants
so that some variant of some expert predicts perfectly, and then uses the Halving algorithm
on the variants. If expertE makesexactlyj mistakes on some sequences of length` then
expertE can be expanded into a collection of

(
`
j

)
variants containing a perfect variant. Each

variant in the collection predicts asE on ` − j of the trials and predicts with the opposite
of E’s predictions on the otherj trials. Thus expertE is expanded into a collection of(
`
j

)
variants, including one that changesE’s predictions on exactly those trials whereE

predicts incorrectly.
For our problem, the master algorithm knows that at least one of theN experts makes at

mostk incorrect predictions, but the master algorithm knows neither which expert is the best
nor the exact number of mistakes made by the best expert. However, the master algorithm
can expand each expert into a collection of

(
`
≤k
)

variants. The union of these collections

contains at mostN
(
`
≤k
)

variants and is guaranteed to contain at least one variant that
predicts correctly on all̀ trials. Our Version Space algorithm runs the Halving algorithm
on the union of these collections, and has a worst case mistake bound oflogN + log

(
`
≤k
)

(when the bounds̀ on the number of trials andk on the number of mistakes made by the
best expert are known in advance).

Intuitively, the Version Space algorithm uses all the knowledge it has about the experts
and the sequences, which is that there is one expert that makes at mostk mistakes on the
sequence. It does not know which expert will be best, in what trials the best expert will
make its mistakes, or even how many mistakes the best expert will make (other than the
upper boundk). Since the goal of the algorithm is to minimize the number of mistakes
that it makes in the worst case, it has to treat all of the scenarios that are possible under the
assumptions equally.

Observe that the version space at the beginning of trialt can be represented by one weight
per expert. The weight of an expert is simply the number of its

(
`
≤k
)

variants that are
consistent with the sequence so far3. If expertE makes at mostk mistakes on thè trials
and has madej mistakes in trials 1 throught, then expertE can make at mostk − j more
mistakes in the remaining̀− t trials. Thus the weight ofE on thet + 1st trial should be(
`−t
≤k−j

)
, which is exactly the number of variants created fromE that are consistent. (The

initial weight of each expert is
(
`
≤k
)
).

Thus the Version Space algorithm can be implemented by manipulating binomials repre-
senting the weights (number of consistent variants) of the experts. If expertE has madej
mistakes in the firstt trials, then during trialt + 1 expertE votes with weight

(
`−t
≤k−j

)
for

its own prediction and with weight
(

`−t
≤k−(j+1)

)
for the opposite prediction. Note that these

votes correspond to the number ofE’s variants that are consistent with allt previous trials
and agree (or do not agree, respectively) with the prediction ofE. Also, expertE’s total
weight is split between the two choices since

(
`−t
≤k−j

)
+
(

`−t
≤k−j−1

)
=
(
`−t+1
≤k−j

)
.

This implementation of the Version Space algorithm totals the votes for outcome0 and
outcome1 and predicts with the majority. At the end of each trialt, the Version Space

76 N. CESA-BIANCHI, ET AL.

algorithm updates the weights of the experts to reflect the outcome on that trial,yt. In
addition, the valueyt is given to all the experts since their future predictions might depend on
the past sequence. The Version Space algorithm, which runs the Halving algorithm directly
on theN

(
`
≤k
)

variants, and the implementation which manipulates binomial weights for
each expert, clearly make the same predictions.

The Binomial Weighting (BW) algorithm is similar to the Version Space algorithm using
weights, but the BW algorithm uses another trick that removes the requirement that the
algorithm knows̀ , the length of the sequence. This trick also makes the upper bound
on the number of mistakes made by the BW algorithm independent of`. There are two
versions of the Halving algorithm: one that discards all inconsistent experts in each trial
and one that does this only in trials when the Halving algorithm makes a mistake (such
algorithms are called “conservative” by Littlestone (Littlestone, 1989)). Both versions of
the Halving algorithm have the same worst case mistake bound (logN), so nothing is lost
by making the Version Space algorithm conservative. The Binomial Weighting algorithm
is the implementation of the conservative Version Space algorithm with binomial weights
and is described in Figure 1.

Because the BW algorithm is conservative, we do not need a variant that perfectly pre-
dicts the outcome. It suffices to have only those variants whose mistakes occur when
the BW master algorithm predicts incorrectly. Since the BW algorithm discards vari-
ants only when the master makes a mistake, such a variant will never be discarded.
Thus the BW algorithm considers only

(
m+1
≤k
)

variants4 of each expert, wherem =

max
{
q ∈ N : q ≤ logN + log

(
q
≤k
)}

as in Figure 1. It is easy to show that BW makes

at mostm mistakes. Assume to the contrary that it makesm + 1 mistakes. Since at least
one of theN experts makes at mostk mistakes, at least one of theN

(
m+1
≤k
)

variants is con-
sistent with them+ 1 outcomes where BW made mistakes. On the other hand, the number
of consistent variants drops by a factor of at least two each time BW makes an incorrect
prediction. Thus the number of consistent variants after BW makesm + 1 mistake is at
least one and at mostN

(
m+1
≤k
)
/2m+1. It follows that1 ≤ N

(
m+1
≤k
)
/2m+1 and equivalently

m+ 1 ≤ logN + log
(
m+1
≤k
)
, contradicting the definition ofm in Figure 1.

This analysis gives us the following theorem:

Theorem 1 For all k ∈ N, all nonempty setsE of experts, and all sequencess ∈
(X × {0, 1})+; if LE(s) ≤ k, then the total number of mistakes of BW(k) ons is at most

max
{
q ∈ N : q ≤ logN + log

(
q

≤ k

)}
, (2)

whereN > 0 is the number of experts inE .

We now describe a variant of algorithm BW, called BW′ (see Figure 2), that has the
same worst-case mistake bound proven in Theorem 1. However, for many sequences of
examples the new algorithm BW′ makes fewer mistakes than the original algorithm. The
current weight of an expertE is now

(
m+1
≤k−j

)
, wherej is the number of mistakes ofE in

all previous trials and not just in the trials in which the master made mistakes as well. The
value ofm is recomputed at the beginning of each trial. This value will decrease by at least

ON-LINE PREDICTION AND CONVERSION STRATEGIES 77

Master Algorithm BW
Input: A set ofN expertsE and a nonnegative integerk.

1. Letm := max
{
q ∈ N : q ≤ logN + log

(
q
≤k
)}

.

2. Set the initial weight of each expert to
(
m+1
≤k
)
, and setm′, the number of mistakes made

by the master, to 0.

3. For each trialt = 1, 2, . . .

(A) For each expertE ∈ E :
Let j be the number of previous trials where bothE and the master made incor-
rect predictions. Then expertE has current weight

(
m+1−m′
≤k−j

)
and votes for its

own prediction with weight
(
m−m′
≤k−j

)
and with weight

(
m−m′
≤k−j−1

)
for the opposite

prediction.

(B) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case
of a tie).

(C) Get the correct predictionyt.

(D) If a mistake occurred, then incrementm′ and update the weight of each expert to
the weight with which it voted for correct bityt.

Figure 1. The Binomial Weighting algorithm.

one after all trials in which the master made a mistake, because the total weight after such a
trial is at most half of what it was before the trial (decreasingm by at least one corresponds
to increasingm′ in BW). The value ofm can never increase but it might also decrease
after trials in which the master made no mistakes. Again it can be shown by induction that
the number of mistakes from any trial onward is at most the value ofm computed at the
beginning of that trial.

2.1. Comparison with Weighted Majority

In this section we compare the performances of the BW and Weighted Majority (WM)
algorithms. The WM algorithm has a parameterβ ∈ [0, 1). An expertE votes for its own
prediction with weightβj , wherej is the number of mistakes made by expertE in the past,
and for the opposite prediction5 with weightβj+1.

Both master algorithms predict 1 if and only if the experts predicting 1 outweigh6 the
experts predicting 0. The weights used by the BW algorithm are binomial tails whereas the
WM algorithm uses exponential weights of the formβj . We often refer toβ as the “update
factor” of the WM algorithm because an expert’s weight gets multiplied byβ when the
expert predicts incorrectly. As one would expect, the choice ofβ greatly affects how the
WM algorithm performs.

78 N. CESA-BIANCHI, ET AL.

Master Algorithm BW ′

Input: A set ofN expertsE and a nonnegative integerk.

1. For each expertE ∈ E set the mistake budgetkE equal tok.

2. For each trialt = 1, 2, . . .

(A) Let m := max
{
q ∈ N : q ≤ log

(∑
E∈E

(
q
≤kE

))}
.

(B) For each expertE ∈ E :
ExpertE has current weight

(
m+1
≤kE

)
and votes for its own prediction with weight(

m
≤kE

)
and with weight

(
m

≤kE−1

)
for the opposite prediction.

(C) Sum the votes for bit 0 and for bit 1 and predict with the majority (arbitrary in case
of a tie).

(D) Get the correct predictionyt.

(E) Decrease the mistake budget,kE , of all experts that predicted incorrectly in this
trial by 1.

Figure 2. The Modified Binomial Weighting algorithm.

In our setting the master algorithms are given two parameters:N , the number of experts
and a boundk on the number of mistakes made by the best expert. We are interested in
worst case bounds on the algorithm’s performance as functions ofN andk.

For any master algorithmA, define the worst case number of mistakesWCA(N, k) as:

WCA(N, k) def= max
E ofN experts

max
s:LE(s)≤k

[number of mistakes ofA(E , k) ons] .

Furthermore, denote the performance of the best master algorithm byWC(N, k), so

WC(N, k) def= min
algorithmsA

WCA(N, k).

We will show in Subsection 2.3 that if the number of experts is large enough then the BW
algorithm is (essentially) optimal. That is, for anyk ≥ 0, there existsNk such that for all
N > Nk

WCBW(N, k) ≤WC(N, k) + 1.

We can only prove the above forNk = Ω(22k). However we show in Subsection 2.2 that
BW is asymptotically optimal, i.e. the ratioWCBW(N, k)/WC(N, k) goes to 1 whenN
or k goes to infinity (see Theorem 3).

Comparing the BW and WM algorithms is complicated by the fact that WM’s mistake
bound depends on how the update factorβ is chosen (as a function ofN andk). For
β ∈ [0, 1), let WMβ denote the WM algorithm that chooses the update factorβ. From

ON-LINE PREDICTION AND CONVERSION STRATEGIES 79

Littlestone and Warmuth (Littlestone & Warmuth, 1994) we have the following mistake
bound for the WM algorithm

WCWMβ (N, k) ≤
logN + k log 1

β

log 2
1+β

. (3)

Since we will be frequently using this upper bound onWCWMβ (N, k), we define

up(N, k, β) def=
logN + k log 1

β

log 2
1+β

. (4)

Let β∗ be the value ofβ (as a function ofN andk) that minimizes up(N, k, β). Vovk
(Vovk, 1990) gives an implicit formula forβ∗. An explicit approximation toβ∗ is given
in Cesa-Bianchiet al. (Cesa-Bianchi, et al., 1995). Withβ set to this approximation, they
show that up(N, k, β) ≤ 2k+2

√
k lnN+logN . We show that up(N, k, β∗) ∼WC(N, k)

wheneverN or k goes to infinity (see Theorem 3).
Although both up(N, k, β∗) and WCBW(N, k) have the same leading term whenN

and/ork is large, there can be significant differences between them. We show below that
our bound on the BW algorithm is always at least as good as the known bounds on the
WM algorithm, i.e. thatWCBW(N, k) ≤ up(N, k, β∗) for all choices ofN andk (see
Theorem 2). However, as we shall discuss below, at least for small values ofN , the upper
bound on the WM algorithm, up(N, k, β∗), is weak and misleading.

LetWM∗ be the WM algorithm that uses update factorβ∗ andWM+ be the WM algorithm
that choosesβ as a function ofN andk so thatWCWMβ(N,k) is minimized. Unfortunately,
we don’t know how to efficiently compute the value ofβ used byWM+. The value of
WCWM+(N, k) is much smaller thanWCWM∗(N, k) for some choices ofN andk. It is
even conceivable thatWCWM+(N, k) is smaller thanWCBW(N, k) for someN, k pairs,
although this disagrees with our intuition.

To make the weakness of inequality (3) concrete, consider the case when there are three
experts (N = 3). It is easy to see thatBW(3, k) = 2k+ 1, which is the best possible. Also
WCWMβ(N,k) = 2k + 1 whenever0 < β < 1/2. However, the value ofβ that minimizes
up(3, k, β) approaches 1 whenN = 3 andk becomes large. In fact, up(3, k, β∗) grows as
2k + Ω(

√
k). Thus the bound up(3, k, β∗) overestimates the number of mistakes made by

WM+ by an (additive)Ω(
√
k) term. Intuitively, a reason for this is that whenβ is large

then two poorly performing experts can outweigh the good expert and cause the master to
make unnecessary mistakes.

The main difference between the WM and BW algorithms is how the weights are updated.
The WM algorithm uses a fixed update factor throughout the entire learning process. The
update factorβ can be written ase−η, whereη > 0 has the natural interpretation as a
learning rate. Whenη is small,β is large, and the WM algorithm learns slowly. Whenη is
large,β is small and the WM algorithm rapidly slashes the weights of poorly performing
experts. The disadvantage of a high learning rate is that the algorithm might discount
experts too quickly, causing its predictions to be dominated by only a few experts.

When the BW algorithm changes an expert’s weight from
(
m−m′+1
≤k−j

)
to
(
m−m′
≤k−j−1

)
then

this can be seen as multiplying the expert’s weight by an update factor that depends onm′,

80 N. CESA-BIANCHI, ET AL.

the number of mistakes made so far by the master algorithm (as well asj, the number of
mistakes made by the expert,N , andk). These update factors used by BW become less
drastic as the number of mistakes made by the master increases (and the upper index of the
binomial coefficients decreases). This represents a kind of annealing schedule performed
on the learning rate (see e.g. (Aarts & Korst, 1989) for examples of annealing): when the
master knows nothing the learning rate is relatively high and as the master learns the learning
rate decreases in order to preserve the previously acquired knowledge. Although one could
use any of a number ofad hocheuristics for “cooling down” the learning rate, we have seen
that the binomial weights are theoretically justified by the version space argument.

Our belief is that the single update factor used byWM∗(N, k) attempts to approximate
the sequence of update factors used byBW(N, k). In addition to the update relationships
between the two algorithms, our proof techniques provide further evidence for this belief.
Both the optimization of WM’s update factorβ as a function ofN andk (Lemma 1) and the
proof that the bound forWM∗ is always worse than the BW bound (Theorem 2) use tech-
niques similar to those used to prove Chernoff bounds for binomial tails (Chernoff, 1952).

We now proceed to compare the bounds on the WM and BW algorithms, beginning with
an examination of theβ∗ minimizing up(N, k, β). Here we re-derive the implicit form of
β∗ given by Vovk (Vovk, 1990). Recall thatH denotes the binary entropy.

Lemma 1 (See also (Vovk, 1990)) For all N ≥ 2, for all k ≥ 0, and for allβ ∈
[0, 1); if m = k(1 + β)/β (so thatm > 2k and β = k

m−k), then the following are
equivalent:

a.
∂up(N, k, β)

∂β
≤ 0,

b. β ≤ k

up(N, k, β)− k ,

c. m ≥ up

(
N, k,

k

m− k

)
, and

d. m ≥ logN +mH

(
k

m

)
,

where the functionup is defined in (4). Also, there is exactly onem∗ > 2k for which the last
inequality is an equality and the correspondingβ∗ is the unique minimum ofup(N, k, β).

The proof of this Lemma is shown in Appendix B.

Lemma 1 shows that, whenN andk are fixed, the unique solutionm∗ to m = logN +
mH(km) is the minimum value of up(N, k, β). Althoughm∗ (andβ∗ = k

m∗−k) is a function
ofN andk, we suppress this dependence to simplify our notation. Also ifm ≥ m∗ andβ =
k

m−k thenm is an upper bound on up(N, k, β) ≥WCWMβ (N, k). Since we are computing
integer-valued mistake bounds, it suffices to find anym′ ∈ R such thatbm′c = bm∗c. Note
thatm > logN + mH(km) whenm > m∗ andm < logN + mH(km) whenm < m∗.
Therefore we can find an appropriatem′ by doing binary search. SinceWC(N, k) ≥
2k + blogNc (as proven by Littlestone and Warmuth (Littlestone & Warmuth, 1994)) and

ON-LINE PREDICTION AND CONVERSION STRATEGIES 81

m∗ ≤ 2k+2
√
k lnN+logN as shown by Cesa-Bianchiet al.(Cesa-Bianchi, et al., 1995),

the search can be limited to the range[2k + blogNc, 2k + 2
√
k lnN + logN]. Thus the

binary search takes at mostO(log k + log logN) time.
Our experience indicates thatm∗ tends to be close to the right edge of this range. For

N = 3, m∗ is within 1 of 2k + 2
√
k lnN + logN . For arbitraryN the right boundary

seems to be at mostlogN greater thanm∗. However these considerations are based on
numerical plots and have not been verified analytically.

We now show that BW beats the bound obtained by minimizing the upper bound for
WMβ . We need a preliminary lemma that is easily derived from the Binomial Theorem.

Lemma 2 For all m, k ∈ N and all0 ≤ β ≤ 1, if k ≤ m then(
m

≤ k

)
≤ (1 + β)m

βk
. (5)

Recall thatm∗ = up(N, k, β∗) for β∗ = k
m∗−k is the minimum of up(N, k, β) over all

β ∈ [0, 1). Similarly, letq∗ be the largest integerq such thatq ≤ logN + log
(
q
≤k
)
. While

m∗ is the upper bound on Weighted Majority derived from inequality (3),q∗ is the upper
bound on the Binomial Weighting algorithm in Theorem 1 (q∗, likem∗, implicitly depends
onN andk).

Theorem 2 For all nonnegative integersk and positive integersN , if q∗ is the largest
integerq such thatq ≤ logN + log

(
q
≤k
)
, thenWCBW(N, k) ≤ q∗ andq∗ ≤ up(N, k, β),

for all β ∈ [0, 1).

Proof: The fact thatWCBW(N, k) ≤ q∗ follows from Theorem 1. Letβ be any real in
[0, 1). By Lemma 2 the solution toq = logN + log

(
q
≤k
)

is never larger than the solution
mβ tom = logN +m log(1 + β)− k log β. Since solving formβ yields

mβ =
logN + k log 1

β

log 2
1+β

= up(N, k, β),

this proves the theorem.

As mentioned above, whenN = 3 the worst case performance ofWM+ (which uses the
best choice ofβ, rather than theβ∗ minimizing the bound) equalsq∗. Furthermore, the gap
between these two andm∗ grows asΩ(

√
k). If N is large compared tok, we believe that

the upper boundm∗ is much closer toWCWM+(N, k). However, even whenN is large,
q∗ can be significantly less thanm∗.

Pick anyk ≥ 1. If N satisfies7

24k(
4k
≤k
) ≤ N <

24k+1(
4k+1
≤k
)

thenq∗ = 4k. With a bit of algebra (and Stirling’s approximation) it can be shown that
m∗ is at least4k + log(3k)−1

2 . In other words, whenN is about24k/
(

4k
≤k
)
, the mistake

82 N. CESA-BIANCHI, ET AL.

bound on BW of Theorem 1 is at leastlog(3k)−1
2 better than the best known bound for the

Weighted Majority algorithm. Although our bounds on the BW algorithm are better than
the up(N, k, β∗) bounds on the WM algorithm, asymptotically the two bounds have the
same leading term. This is shown in the following section.

2.2. Asymptotic performance of the algorithms

This subsection shows that both BW andWM∗ are asymptotically optimal in the worst case.
The proof uses a probabilistic argument to show the existence of “hard” sets of experts.
Using these hard sets of experts, an adversary can force any prediction algorithm to make
a mistake on each trial proving the desired lower bound. We use the notationfi ∼ gi when
limi→∞ fi/gi = 1. We define the following functions to serve as lower bounds

low(N, k) def= max
{
q ∈ N : q ≤ logN + log

(
q

≤ k

)
− log

(
1 + ln

(
q

≤ k

))}
,

Low(N, k) def= max(low(N, k), 2k + logN).

We now state the two results of this section.

Theorem 3 For any integersN ≥ 2 andk ≥ 0, there exists a setE ofN experts such
that the following holds for any deterministic master algorithmA: there exists a sequence
s of trials such thatLE(s) ≤ k andA makes at leastLow(N, k) mistakes ons.

The above lower bound is then used to show that BW andWM∗ are both asymptotically
optimal.

Theorem 4 For any sequence{(Ni, ki)}i∈N of pairs of positive integers, ifNi ≥ 2 for
all i andlimi→∞Ni =∞ or limi→∞ ki =∞, then asi→∞,

Low(Ni, ki) ∼WCBW(Ni, ki) ∼WCWM∗(Ni, ki) ∼ up(Ni, ki, β∗i) ,

whereβ∗i =
ki

up(Ni, ki, β∗i)− ki
.

Before proving Theorem 3, we need some definitions and lemmas. The first lemma is
from Littlestone and Warmuth.

Lemma 3 ((Littlestone & Warmuth, 1994)) For any integersN ≥ 2 andk ≥ 0,
there exists a setE ofN experts such that the following holds for any deterministic master
algorithmA: there exists a sequences of trials such thatLE(s) ≤ k andA makes at least
2k + logN mistakes.

The above lemma proves the first lower bound used in the definition of Low. The second
lower bound is proven using a covering argument. For any positive integerq and any
nonnegative integerk ≤ q, a k-covering of theq-dimensional boolean hypercube is a
subsetB of {0, 1}q such that for anyv ∈ {0, 1}q there is ap ∈ B such thatdH(p,v) ≤ k.
If in the on-line prediction setting the experts’ predictions are solely a function of the trial

ON-LINE PREDICTION AND CONVERSION STRATEGIES 83

number, then each expert can be viewed as a sequence of bits. Furthermore, a setE of such
experts is ak-covering for some subset{t1, t2, . . . , tq} of trials if the set of the sequences of
lengthq representing the predictions of the experts in the trialst1, t2, . . . , tq is ak-covering
of {0, 1}q.

Now we give a technical lemma showing that some coverings are not too large. We
adapt a nonconstructive argument of Alon and Spencer from (Alon, Spencer & Erd˝os, 1992,
Theorem 2.2, page 6).

Lemma 4 For all N ≥ 1 and for allk ≥ 0, if m = low(N, k), then there is ak-covering
of {0, 1}m of size at mostN .

Proof: We prove the lemma using a probabilistic argument. LetR ⊆ {0, 1}m be chosen
randomly so that the eventv ∈ R occurs with probabilityp > 0 (to be specified later)
independently for anyv ∈ {0, 1}m. LetR′ be the subset of{0, 1}m containing all points
notk-covered byR. ClearlyR∪R′ is ak-covering of{0, 1}m. Observe that anyz belongs

toR′ if and only if for anyv ∈ R, dH(z,v) > k. This impliesPr(z ∈ R′) = (1− p)(
m
≤k),

since there are
(
m
≤k
)

corners of them-dimensional boolean hypercube with Hamming
distance at mostk from z (z itself included). From the above it is easy to compute the
expectation of the random variable|R|+ |R′|.

E[|R|+ |R′|] = 2mp+ 2m(1− p)(
m
≤k).

Now setp =
ln (m≤k)
(m≤k)

. Then

E[|R|+ |R′|] = 2m

 ln
(
m
≤k
)(

m
≤k
) +

(
1−

ln
(
m
≤k
)(

m
≤k
))(m≤k)

≤ 2m

[
ln
(
m
≤k
)(

m
≤k
) + exp

(
− ln

(
m

≤ k

))]
(6)

= 2m
1 + ln

(
m
≤k
)(

m
≤k
)

where inequality (6) holds since1−x ≤ e−x for all x > 0. Thus, ifN ≥ 2m
1+ln (m≤k)

(m≤k)
then

them-dimensional boolean cube isk-covered by a set of sizeN . Solving this inequality for
m yields thatm ≤ logN+log

(
m
≤k
)
−log(1+ln

(
m
≤k
)
), or equivalently thatm ≤ low(N, k)

ensures that them-dimensional boolean cube has ak-covering of sizeN .

Proof of Theorem 3: In view of the lower bound stated in Lemma 3 it suffices to prove
a second lower bound of low(N, k) mistakes. We use Lemma 4 to do this. Choose a
sequence{xi}i∈N of distinct observations. Choose integersN ≥ 2 and k ≥ 0. Let
m = low(N, k). By Lemma 4, there exists a setE ofN experts, whose predictions depend
only on the trial number, such thatE is ak-covering for the firstm prediction trials. Now

84 N. CESA-BIANCHI, ET AL.

notice that, ifE is ak-covering for the firstm trials, an adversary can forcem mistakes
on any deterministic prediction algorithm. The adversary simply chooses the sequence
y of outcomes, of lengthm, such thatyt is the opposite of the algorithm’s prediction on
the tth trial. SinceE is a k-covering of{0, 1}m, for any such sequencey of outcomes
there is some expert inE which makes at mostk mistakes on(x1, y1), . . . , (xm, ym).

Proof of Theorem 4: By Theorem 3 we know that Low(N, k) is a lower bound on the
number of mistakes for any deterministic master algorithm.

Let ω = {(Ni, ki)}i∈N be a sequence as in the statement of the theorem. Since by
Lemma 1 and Theorem 2

Low(Ni, ki) ≤WCBW(Ni, ki) ≤ up(Ni, ki, β∗i)

and

Low(Ni, ki) ≤WCWM∗(Ni, ki) ≤ up(Ni, ki, β∗i)

it is sufficient to show that

lim
i→∞

Low(Ni, ki)
up(Ni, ki, β∗i)

= 1 . (7)

The proof of (7) is shown in Appendix C.

2.3. Lower bounds based on Ulam’s game

In this section we give lower bounds on the performance of prediction strategies. We show
that for any fixed number of mistakesk of the best expert and for any prediction algorithm,
there exists a setE of experts and a sequences such thatk = LE(s) for which the number
of mistakes made by the prediction algorithm is at least as large as the number of mistakes
made by BW.

We start by introducing some notation that lets us give a precise statement of our lower
bound. We then describe Ulam’s game with lies and its relation to our prediction problem.
Finally, we show how Spencer’s results (Spencer, 1992) can be used to prove our lower
bound.

In all of the following discussion we shall think ofk, the upper bound on the number of
mistakes made by the best expert, as being fixed. LetJ(k, q) be the following sequence of
numbers indexed byq:

J(k, q) = 2q/
(
q

≤ k

)
.

It is easy to check thatJ(k, q + 1) ≥ (5/4)J(k, q), for anyq ≥ 3k + 2, thus the sequence
J(k, q) increases (at least) exponentially.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 85

Theorem 5 For every nonnegative integerk there exists an integerNk such that for all
N > Nk the following holds:
If q is the integer such thatJ(k, q) ≤ N < J(k, q + 1), then

1. WCBW(N, k) ≤WC(N, k) + 1.

2. If J(k, q) + 2k ≤ N , WCBW(N, k) = WC(N, k).

Observe that the upper bound on algorithm BW is always guaranteed to be within one
mistake of the optimal algorithm whenN is large enough. Also, since the size of the segment
[J(k, q), J(k, q + 1)] increases exponentially withq, asq increases the set of values forN
where the second case holds (i.e. the lower bound is off by one from BW’s upper bound)
becomes an insignificantly small fraction of the possible values forN . This shows that BW
is very close to optimal for large values ofN . The gap of one whenN < J(k, q) + 2k

arises from complicated number-theoretic considerations. In Appendix A we show how
algorithm BW can be modified so that it is completely optimal for largeN . The weakness
of this lower bound construction is that the thresholdNk above which the lower bound
holds is rather large, on the order of22k . This double-exponential dependence onk arises
from our use of Spencer’s results (Spencer, 1992).

Before we give the proof of Theorem 5, we briefly describe Ulam’s game with a fixed
number of lies and show how this game relates to chip games and to the problem of
combining the predictions of experts.

In the searching game introduced by Ulam (see (Ulam, 1977)) there are two players: a
chooser(also called Carol) and apartitioner (also called Paul). A game is defined by three
nonnegative integersN , k, andq that are known to both players. Carol is assumed to select
a secret numberx from the set{1, . . . , N}. Paul’s goal is to find out what this number is
by asking Carol questions of the form “Isx in S?”, whereS is any subset of{1, . . . , N}.
Carol is required to answer either “yes” or “no”. However, she is allowed to lie (i.e. give
the incorrect answer to Paul’s question) up tok times.8 We say that Paul wins the(N, k, q)
game if and only if he can always identify Carol’s secret number after at mostq questions,
regardless of Carol’s strategy.

The interesting fact is that there is a common abstraction of Ulam’s game with lies and
of our problem. The abstraction can be seen as the following chip game (for more work on
chip games, see (Aslam & Dhagat, 1991)). We think of each number in the set{1, . . . , N}
as a “chip” and considerk + 1 (disjoint) subsets of these chips, which we call “bins”,
and denote byB0, . . . , Bk. At each point of the game, the binBj contains all the chips
that correspond to a numberx ∈ {1, . . . , N} with the property that ifx is the number
chosen by Carol, thenj of the answers that Carol gave so far have been lies. Thus the
union of all the bins contain those choices ofx that are consistent with the boundk on the
number of lies that Carol is allowed to make. Essentially, it is sufficient to describe each
configuration reached during the game by the number of chips in each bin. We denote by
Ij = (Ij0 , . . . , I

j
k) the configuration of the chip game after at thejth trial, whereIji is a

natural number denoting the number of chips inBi. For example, the initial configuration
is alwaysI0 = (N, 0, . . . , 0).

When Paul asks “Isx in S ?”, his question partitions the chips into two sets, those inS
versus those outsideS. If Carol answers “no” her answer constitutes a lie with respect to

86 N. CESA-BIANCHI, ET AL.

the numbers inS. This translates to advancing each chip corresponding to a number inS
from its current bin to the next bin (e.g. from binBj toBj+1). If a chip corresponding to
a number inS is already in the last binBk, it is discarded as there is no binBk+1. If Carol
answers “yes”, then those chips corresponding to numbers not inS are advanced.

Clearly Paul cannot know which number Carol has chosen as long as the union of the bins
contains at least two chips. Thus Carol’s goal is to keep two chips in the union of the bins
for as long as possible. Paul wins the(N, k, q) iff there is a strategy for choosing partitions
guaranteeing that afterq steps there is at most one chip remaining in the union of the bins.

We can think of the prediction problem as a “prediction game” where the predictor is
playing against an adversary that picks both the predictions generated by the experts, and
the outcomes.9 We restrict our attention to those adversary strategies that force the prediction
algorithm to make a mistake on each and every trial for as long as possible. This means
until one expert has madekmistakes and every other expert has made more thankmistakes,
the adversary chooses the feedback so that the prediction algorithm makes a mistake on
every trial. From this point on, the predictions of the single best expert are guaranteed to be
without mistakes, and by copying the predictions of this expert the master algorithm will
correctly predict the remainder of the sequence. This restriction is helpful to map to the
prediction game into a chip game, and restricting the adversary in this way does not reduce
its power since we are able to obtain a lower bound that essentially matches the upper bound
of the BW algorithm.

We can easily relate this “prediction game” to a chip game. Each chip corresponds to
an expert and the binBj , for 0 ≤ j ≤ k, contains those chips corresponding to experts
that have made exactlyj mistakes on previous trials. Each iteration of the game starts
with the adversary partitioning the chips to two sets according to the predictions given
by the corresponding experts. The prediction algorithm then chooses its prediction, and
the adversary forces a mistake by generating an outcome opposite to the prediction. This
causes those chips corresponding to experts whose predictions were mistaken to advance
one bin. Thus the prediction algorithm (indirectly) chooses which subset of the chips gets
advanced, so the prediction algorithm corresponds to Carol and the adversary corresponds
to Paul. The game ends when the configuration(0, 0, . . . , 1) is reached, we shall refer to this
configuration as theterminalconfiguration. This is a slight difference from the chip game
that corresponds to Ulam’s game withk lies. Another, much more significant difference, is
that the goals of the opponents have been reversed. In the chip game corresponding to the
prediction problem, Carol (the prediction algorithm) wants toshortenthe game as much as
possible since the length of the game measures the number of mistakes that the prediction
algorithm is forced to make.

As the goals of Carol and Paul have been reversed, it would seem that their strategies for
playing the two games would be very different. Surprisingly, it turns out that the optimal
strategy for Paul is the same in the two games when the different ending condition is ignored.
If N ≥ Nk then this optimal strategy Paul can force both games to have the same length,
regardless of the actions taken by Carol. In other words, if Paul uses this strategy then Carol
is unable to make the game neither longer nor shorter.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 87

This strategy for Paul has been developed by Spencer (Spencer, 1992), and is the basis of
the proof of Theorem 5. We shall briefly describe the strategy, give Spencer’s result, and
then use it to prove Theorem 5.

Spencer identifies the same binomial weights that are used in the BW algorithm as the
central quantities on which the strategies of both Carol and Paul are based. We shall denote
byWq(I) the weight associated with the configurationI and the integerq, i.e.

Wq(I) =
k∑
i=0

Ii

(
q

≤ k − i

)
.

Spencer gives a strategy for Carol. Under this strategy Carol advances those chips that keep
the future configurations as heavy as possible. The exact opposite choice is made by the
BW algorithm, which advances the heavier chips, resulting in alighter configuration. This
makes intuitive sense, because Carol has opposite goals in the two games.

The main result of Spencer’s paper (Spencer, 1992) is the identification of a class of
“good” configurations. For each configuration in this class there exists a partition such
that both future configuration have equal weight, equal to half the weight of the current
configuration, and both configurations are either good or consist of a single chip. Thus,
starting from a good configuration, Paul can repeatedly partition the chips in such a way that
in each step the weight is halved until only a single chip remains. It is clear that, by choosing
these partitions, Paul can completely neutralize Carol once one of the good configurations
is reached. The definition of the good configurations rests on the observation that the
weight associated with the chips in binBk is always 1, because

(
q
≤0

)
= 1. These chips

are appropriately referred to as “pennies”. It is clear that if a configuration has a sufficient
number of pennies, and the total weight is even, then by moving pennies from one set of the
partition to the other one can equalize the weight of the two successor configurations. Paul’s
strategy is to choose a partition whose two successor configurations are almost balanced
and then use pennies to balance them completely. The main theorem in Spencer’s paper
shows that if the initial configuration has a sufficient number of pennies, Paul can use this
technique repeatedly, without running out of pennies until a configuration with a single chip
is reached.

We now give the main result from Spencer’s paper in a form that fits our needs.

Theorem 6 (Spencer, 1992) For any numberk > 0 of bins, there exist finite integers
c(k) andq0(k) such that the following holds for allq > q0(k): if I0 = (I0

0 , . . . , I
0
k) is an

initial configuration such thatI0
k > c(k)qk andWq(I0) = 2q, then there exists a strategy

for Paul such that, independent of the choices made by Carol, a configurationIm is reached
such that

∑k
i=0 I

m
i = 1 andWq−m(Im) = 2q−m.

In other words, Paul can guarantee that the total weight is exactly halved at each step,
until only a single chip is left.

Proof of Theorem 5: The proof is divided into two parts, we first show that ifN is large
enough then from the initial configurationI0 = (N, 0, . . . , 0) Paul can reach, ink steps, a
configuration that meets the conditions of Theorem 6. In the second part we show that the
final configuration reached in Theorem 6 guarantees the bound given in the theorem.

88 N. CESA-BIANCHI, ET AL.

In the proof we make use of the idea that Paul “marks” chips as useless. If a chip is marked
on some particular trial, then this chip is placed arbitrarily in the partitions generated by Paul
on subsequent trials. We shall prove that Paul can delay reaching a terminal configuration
even when only the unmarked chips are considered. It is clear that if the marked chips were
also considered, then reaching the terminal configuration would be delayed for at least as
long, which proves the lower bound on the number of trials.

Initially, all N chips are in binB0. It takes at leastk steps to get chips to binBk and thus
make them into pennies. We shall devise a strategy for the firstk trials that is guaranteed
to give rise to a sufficient number of pennies at thekth trial. First, Paul marks some chips
so as to make the number of unmarked chips divisible by2k. Clearly, less than2k chips
need to be marked. Ignoring the marked chips Paul generates the following partitions. The
(unmarked) chips in each bin are divided into two equal parts, one part from each bin is
placed in the first set of the partition, and the other part is placed in the second. It is easy
to check that, independently of Carol’s actions, such partitioning of the unmarked chips is
possible fork steps. It is also simple to see that afterk trials exactly a fraction of2−k of
the unmarked chips reach binBk and become pennies.

Let q be the integer such thatJ(k, q) ≤ N ≤ J(k, q + 1). From (1) it is clear that the
weight that is associated with the unmarked chips is divided by two at each step. Thus,
independently of Carol’s choices, the weight of the configuration afterk steps satisfies

Wq−k(Ik) > 2−k(N − 2k)
(
q

≤ k

)
. (8)

To apply Theorem 6 we need that the remaining weight (afterk steps) of the unmarked
chips is a power of two. We first find an appropriateq̃ such thatWq̃(Ik) > 2q̃.

By the definition ofq, J(k, q) ≤ N ≤ J(k, q + 1). If N is large enough thenJ(k, q)−
J(k, q−1) ≥ 2k and thusN ≥ J(k, q−1)+2k. This implies that(N −2k)

(
q−1
≤k
)
≥ 2q−1

and thus by inequality (8),Wq−k−1(Ik) > 2q−k−1. It follows that ifN is large enough
then we can always chooseq̃ = q−k− 1. However ifN ≥ J(k, q) + 2k, then by the same
derivation we getWq−k(Ik) > 2q−k and we can set̃q = q − k .

We now wish to apply the results of Theorem 6 to the configurationIk, whose weight
satisfiesWq̃ > 2q̃. However, in order to obey the conditions of the theorem we have to mark
some more chips in order to make the weight of the configuration satisfyWq̃(Ik) = 2q̃.
We do this marking carefully, so that afterwards we still have enough unmarked pennies
to apply the theorem. We mark chips using the following simple procedure: we mark
nonpenny chips until we cannot mark a nonpenny chip without reducingWq̃(I) below2q̃.
We then mark enough pennies to reduce the weight to2q̃. As the heaviest chips (those in
B0) weigh

(
q̃
≤k
)
≤ (3q̃)k, we need to mark at most(3q̃)k pennies. Taking into account both

the initial marking of less than2k chips and this additional marking phase, we get that the
number of unmarked pennies is at leastb2−k(N − 2k + 1)c− (3q̃)k ≥ 2−kN − (3q̃)k− 2.

On the other hand, in order to apply Theorem 6 we need at leastc(k)q̃k unmarked pennies.
This is satisfied if2−kN − (3q̃)k − 2 ≥ c(k)q̃k. As for any fixed value ofk, q and thus̃q
isO(logN), the last condition is satisfied for everyN > Nk for a large enoughNk.

We can thus apply Theorem 6 with the initial configuration being the unmarked chips in
thekth configuration, that we denote byIk. The weight of this configuration isWq̃(Ik) =

ON-LINE PREDICTION AND CONVERSION STRATEGIES 89

2q̃. The theorem guarantees that Paul can find partitions so that after somem steps a
configurationIk+m is reached such that

∑k
i=0 I

k+m
i = 1 andWq̃−m(Im) = 2q̃−m. Thus

only a single chip will be left. It is easy to verify that as the weight of the chip is2q̃−m it
must be in binBk−(q̃−m). After another̃q −m steps the single chip will be in the last bin
and the game is over.

Finally, we sum up the number of trials, or mistakes, that Paul can force on Carol. We have
k trials before getting the pennies,m trials using the Spencer’s strategy, andq̃−mmistakes
at the end. Summing these terms and using the definition ofq̃ we get that Paul can always
force at leastq−1 mistakes and ifN ≥ J(k, q)+2k then Paul can force at leastqmistakes.

3. Conversion strategies

In this section we show how the ideas behind the BW algorithm can be used to modify
prediction algorithms so that they can tolerate malicious noise. Assume we are given a
prediction algorithmA that makes at mostk mistakes on any sequence in some setΣ ⊆
(X × {0, 1})∗. We assume that algorithmAmakes at mostkmistakes even if it is presented
with asubsequenceof any sequence inΣ. Formally, we require thatΣ is subsequence closed.
Any deterministic prediction algorithm can be converted to an algorithm that changes its
state only when its prediction is incorrect. This is achieved by resetting the state ofA after
each trial in whichA predicts correctly to the state ofA before the trial. This conversion
does not increase the worst case number of mistakes on the subsequence closed setΣ. The
converted algorithm is calledconservative(Littlestone, 1989). For the rest of this section we
shall always assume that the set of sequences is subsequence closed and that the prediction
algorithm is conservative.

AlgorithmA is allowed to perform arbitrarily badly if given an instance/outcome sequence
that is not inΣ. For example, ifΣ = (X × {0})∗ ∪ (X × {1})∗ (i.e. all sequences where
the outcome is held constant) then the algorithmA which always predicts with the first
outcome seen makes at most one mistake when given a sequence inΣ. However, if the first
label is corrupted by malicious noise then all subsequent predictions made by algorithmA
will be incorrect.

Here we show how to convertA into another algorithm that performs well on sequences
in Σ that are corrupted by noise. In particular, for anyr we can build an algorithm that
performs well on those sequences which can be created from a sequence inΣ by arbitrarily
changing up tor examples. We useΣ′ to denote this set of noisy sequences. As the above
example indicates, algorithmA may make arbitrarily many mistakes on sequences inΣ′.
Furthermore, the sequences inΣ′ might have different outcomes for the same instance and
algorithmAmight not even be defined on this larger set of sequences. In that case we extend
the definition ofA by assigning it the default prediction 0 and restarting it at its initial state.
Thus we assume throughout thatA’s prediction and successor state are always defined.
In this section we use the methods developed in Section 2 to construct master algorithms,
calledconversion strategies, whose mistake bounds increase slowly as a function ofr.

90 N. CESA-BIANCHI, ET AL.

As in Section 2, we use a version space argument and expandA into a set of variants so
that at least one variant will be correct on all trials where the conversion strategy makes
a mistake. However, here the elements of the version space are somewhat dynamic as
they represent computations ofA on sequences inΣ. In addition to discarding irrelevant
computations from the version space, the conversion strategy will also need to extend certain
computations by simulatingA on the current trial. Since the members of the version space
managed by the conversion strategy are somewhat dynamic, it may be a slight misnomer to
call it a version space. However “version space” does convey the proper intuition.

Since our conversion strategies are conservative we can concentrate on those trials where
the conversion strategy itself makes mistakes. Here we usem for a bound on the number
of mistakes made by the conversion strategy,k to denote the mistake bound of algorithm
A on sequences inΣ, andr as the number of examples corrupted by noise.

We first outline theCbin conversion strategy that is based on binomial weights, and later
describe a second conversion strategy,Cexp, based on exponential weights. These strategies
are described in more detail in Sections 3.1 and 3.2 respectively.

A major difference between the conversion problem discussed here and the one addressed
in Section 2 is that with experts there were only two possibilities for each trial — the expert
was either correct or incorrect. Here we considerthreedifferent cases. The first case is
when algorithmA correctly predicts the outcome. In the other two cases the prediction
is incorrect. In the second case the wrong prediction is due to the fact that the example
is corrupted by noise and in the third case the example is unchanged but the algorithm
makes a mistake in predicting the label. Therefore, instead of associating a bit string to
each member of the version space, theCbin strategy attaches a string of “trits” from the
set {0, noise,mstk}. Each member of the version space is a stored state of algorithm
A together with a stringτ = (τ1, . . . , τm) ∈ {0, noise,mstk}m. These strings have an
interpretation like the bit strings of Section 2. If a (state, τ) pair is in the version space
when the conversion strategyCbin makes itsith mistake, then the value ofτi represents the
following possibilities. The value0 represents the possibility thatA predicted the label of
the example correctly. The valuesnoiseandmstkrepresent the possibility thatA predicted
incorrectly, where the cause for the incorrect prediction is attributed to noise or to a mistake
byA respectively.

Since algorithmAmakes at mostk mistakes, each stringτ containsmstkat mostk times.
Similarly, since we assume that at mostr of the trials are corrupted by noise,noiseappears
at mostr times in each string. Therefore only some of the3m strings in{0, noise,mstk}m
are legitimate. In particular, if there arej nonzero elements in a string,j will be between
0 andr + k. Furthermore, at mostr and at leastj − k of the elements in the string will be
noise. This gives us

size(r, k,m) def=
r+k∑
j=0

(
m

j

)[(
j

≤ r

)
−
(

j

≤ j − k − 1

)]
strings that must be considered. An examination of the term in brackets shows thatsize is
symmetric inr andk, as expected. Furthermore,size(r, k,m) = O(mr+k(r+k)min(r,k)).

TheCbin conversion strategy starts with a version space containingsize elements, each
with the initial state of algorithmA and a different legitimate stringτ . The conversion

ON-LINE PREDICTION AND CONVERSION STRATEGIES 91

strategy manages the version space by predicting with the halving algorithm. However, it
is no longer quite so clear what this means.

Consider the situation after the conversion strategyCbin has madei − 1 mistakes and
sees instancex ∈ X. In this case each element of the version space,(state, τ) will be
using itsτi to see if its variant ofA is correct, has a noisy trial, or makes a mistake. Each
variant will see howA (in statestate) predicts. If itsτi is 0 then the variant predicts the
same way, otherwise the variant predicts with the opposite value. Conversion strategyCbin

may update the version space after getting the outcome. If the conversion strategyCbin

predicted correctly then all variants are kept unchanged. IfCbin predicted incorrectly then
those variants also predicting incorrectly are discarded. In addition, whenCbin predicts
incorrectly those variants predicting correctly may be updated based on theirτi values.
There are three cases, according to the value ofτi.

1. Caseτi = 0: This means that the variant predicted the outcome correctly. SinceA is
conservative,Cbin leaves the state of the algorithmA for this variant unchanged.

2. Caseτi = noise: This means that the prediction ofA is incorrect but would have been
correct if the example was not corrupted by noise. As in the previous case,Cbin leaves
the state of the algorithmA unchanged.

3. Caseτi = mstk: This means that the prediction ofA is incorrect becauseA has made
one of itsk allowed mistakes and that the example is not corrupted by noise. In this
caseCbin updates the state ofA. This is done by simulatingA, starting from the old
state, on the example received in the current trial. The resulting state ofA replaces the
old state in the variant.

We show in Lemma 5 that:

1. On each trial whereCbin makes a mistake, the size of the version space drops by a
factor of at least 2.

2. For any sequence inΣ′ at least one variant is never removed from the version space
during the run of the master algorithm.

We need a few definitions before we can precisely state our bounds on theCbin con-
version strategy. For alln ∈ N and for all pairss = ((x1, y1), . . . , (xn, yn)) and
u = ((x′1, y

′
1), . . . , (x′n, y

′
n)) of sequences in(X × {0, 1})n, we say thats is anr-corrupted

version ofu if and only if (xi, yi) 6= (x′i, y
′
i) for at mostr indicesi, where1 ≤ i ≤ n.

We shall also use the notationdC(s,u) = r to indicate thats is anr-corrupted, but not an
(r − 1)-corrupted, version ofu. Thus

dC(s,u) def= min{r ∈ N : s is anr-corrupted version ofu } .

We definedC(s,u) =∞ if the sequences differ in length or if they have an infinite number
of disagreements, and says is a corrupted version ofu if dC(s,u) is finite.

We will show in Section 3.1 that the conversion strategyCbin achieves the following
bound.

92 N. CESA-BIANCHI, ET AL.

Theorem 7 For all conservative, deterministic algorithms A, for all subsequence-closed
sets of sequencesΣ ⊆ (X × {0, 1})∗, and alls ∈ (X × {0, 1})+, if

• k ≥ max{LA(u) : u ∈ Σ} and

• s is anr-corrupted version of some sequence inΣ,

then the number of mistakes made byCbin(r, k, A) on the sequences is at most

max {q ∈ N : q ≤ log(size(r, k, q))} . (9)

In Theorem 9 we will show that the bound in (9) isO(r + k). Note also that theCbin

strategy needs to know the upper boundsk andr.
In Section 3.2 we describe a second conversion strategy that we call theCexp strategy.

TheCexp strategy uses exponential weights (as used in the Weighted Majority algorithm)
and does not require advance knowledge ofr andk. However one cannot optimize the
mistake bounds ofCexp without knowing these parameters. The following theorem gives
the mistake bound we prove for the conversion strategyCexp.

Theorem 8 For all conservative, deterministic algorithms A, for all subsequence-closed
sets of sequencesΣ ⊆ (X × {0, 1})∗, and alls ∈ (X × {0, 1})+, if

• α andβ are nonnegative real numbers such thatα+ β < 1, and

• s is a corrupted version of someu ∈ Σ,

then the number of mistakes made byCexp(α, β,A) on sequences is at most⌊
min
u∈Σ

max
u′⊆u

dC(s,u) log 1
α + LA(u′) log 1

β

log 2
1+α+β

⌋
, (10)

whereu′ ⊆ u means thatu′ is any subsequence ofu.

It is easy to verify numerically that by choosingα = β = 0.147, the upper bound for
Cexp displayed in (10) is at most

min
u∈Σ

max
u′⊆u

4.4035(dC(s,u) + LA(u′)).

Thus we get a reasonable bound that holds for all values ofdC(s,u) andLA(u′).
However, if one wants to setα andβ so that the mistake bound ofCexp is optimized

then one needs to know upper boundsk andr ondC(s,u) andLA(u′), respectively. The
case whenr or k is 0 is degenerate. Thus we assume thatmin(r, k) ≥ 1. The following
inequality was numerically checked using MAPLEtm, a software package for symbolic
computation,

r log 1
α + k log 1

β

log 2
1+α+β

≤ f(r, k)

ON-LINE PREDICTION AND CONVERSION STRATEGIES 93

for α = r
f(r,k)−r−k andβ = k

f(r,k)−r−k , where

f(r, k) def= 2(r + k) + 2
√
rk ln(e− 1 + max(r, k)/min(r, k)) + 2.807

√
rk.

If r ≥ k, then by dividing the inequality byk, we are left with an inequality inr/k, where
r/k ∈ [1,∞). We plotted the difference between the left-hand side and right-hand side of
the latter inequality as a function ofr/k and checked the values of the difference and its
derivatives with respect tor/k at the end points 1 and∞.

One can also show that there is no constantc independent ofr andk such that the mistake
bound ofCexp (with α andβ optimized) is at most2(r + k) + c

√
rk.

Notice however thatCexp has a worst-case mistake bound larger thanCbin: In much
the same way we proved Theorem 2 in Section 2.1 we can also prove the following (see
Section 3.2).

Theorem 9 For all k, r ∈ N and allα, β ∈ [0, 1), if α+ β < 1, then

max {q ∈ N : q ≤ log(size(r, k, q))} ≤
⌊
r log 1

α + k log 1
β

log 2
1+α+β

⌋
. (11)

To show an immediate application of Theorems 7 and 8 consider the special case when the
setΣ ⊆ (X × {0, 1})∗ of uncorrupted sequences is the set of all sequences consistent with
some familyF of {0, 1}-valued functionsf onX. That is

Σ = ΣF =
{
〈(xt, f(xt))〉t : f ∈ F ∧ 〈xt〉t ∈ X+

}
.

This more restricted setting was studied by Littlestone (Littlestone, 1989) and Littlestone
and Warmuth (Littlestone & Warmuth, 1994) where they define the quantities Opt(F , 0),
i.e. the optimal worst-case number of mistakes over all sequences fromΣF , and Opt(F , r),
i.e. the optimal worst-case number of mistakes over allr-corrupted sequences fromΣF .
Littlestone and Warmuth (Littlestone & Warmuth, 1994) show that Opt(F , r) ≥ 2r +
Opt(F , 0), but the problem of finding an equivalent upper bound is left open. By ap-
plying Theorem 7 (or the weaker Theorem 8) whenΣ = ΣF and the sub-algorithmA
is optimal, we obtain the upper bound Opt(F , r) ≤ 4.4035(r + Opt(F , 0)), showing
Opt(F , r) = Θ(r + Opt(F , 0)). Auer and Long (Auer & Long, to appear) independently
developed an algorithm essentially equivalent to ourCexp strategy.10

All of our conversion schemes use deterministic prediction algorithms. This means that
the algorithm’s prediction depends only on its current state and the observation. After
making its prediction, the algorithm enters a new state based on the observation and the
outcome. We denote the initial state of the prediction algorithm bySinit and useAS to
denote prediction algorithmA in stateS. When the observation is fixed, the next state
entered by algorithmA depends only on the outcome. We useSx,0 (andSx,1) to denote the
(possibly identical) next state entered byAS afterAS receives observationx and outcome
0 (or outcome 1 respectively). In the rest of this section we state and prove the mistake
bounds forCbin andCexp.

94 N. CESA-BIANCHI, ET AL.

3.1. The conversion strategyCbin

In this section we formally describe theCbin strategy and prove its mistake bound.
TheCbin strategy uses a concise representation of the version space in much the same way

that theBW algorithm keeps a single binomial weight for each expert. In order to avoid
confusion with the states of the algorithm being converted, we call the states of theCbin

algorithmconfigurations. Each configuration encodes the appropriate version space as well
as a value (which we usually denotec′) indicating an upper bound on the number of mistakes
yet to be made by the conversion strategy. TheCbin algorithm changes configurations only
when it makes a mistake.

The version space is encoded in a configuration as a (multi-)set of triples representing com-
putations of algorithmA on corrupted versions of subsequences of the past trials. More pre-
cisely, the version space is represented by a collection of triples(S, r′, k′), whereS is a possi-
ble state of algorithmA and the other two components are integers. Intuitively,r′ represents
the maximum number of future examples that can be corrupted by noise andk′ represents the
maximum number of mistakes made by algorithmA in the remaining trials. Thus ifc′ is the
upper bound on the number of mistakes yet to be made by the conversion strategy, the single
triple
(S, r′, k′) represents

r′+k′∑
i=0

(
c′

i

)[(
i

≤ r′

)
−
(

i

≤ i− k′ − 1

)]
different elements in the version space (or(S, τ) pairs forτ ∈ {0, noise,mstk}c′). It is
important to understand that the valuesr′, k′, andc′ all start at the upper boundsr, k, and
m, respectively, and count down.

The initial configuration of theCbin conversion strategy contains the single triple,
(Sinit, r, k) whereSinit is the initial state of algorithmA, r is the bound on the number of
noisy trials, andk is the mistake bound ofA on sequences inΣ. The initial configuration
of Cbin also contains the mistake budget11 c′ = m + 1, 1 greater than the mistake bound
of Cbin.

An important concept is thesuccessorsof a configuration. For any possible stateS of
algorithmA and anyx ∈ X we useSx,0 andSx,1 to denote the states entered byA from
stateS after processing the single observation-outcome pair(x, 0) or (x, 1), respectively.
Given a configurationC with mistake budgetc′, we define thesuccessors, Cx,0 andCx,1, of
configurationCt with respect to observationx in the following way.

Both successor configurations have mistake budgetc′−1. For each triple(S, r′, k′)
in Ct, consider the prediction ofAS on observationx.

If AS predicts1, then

• configurationCx,1 contains the single triple(S, r′, k′), and

• configurationCx,0 contains the triples(Sx,0, r′, k′ − 1) and (S, r′ − 1, k′)
representing the possibilities of a incorrect prediction byA and a noisy trial
respectively.

ON-LINE PREDICTION AND CONVERSION STRATEGIES 95

Similarly, if AS predicts0 on observationx then

• configurationCx,0 contains the triple(S, r′, k′), and

• configurationCx,1 contains the triples(Sx,1, r′, k′ − 1) and(S, r′ − 1, k′).

We define the weight of a configuration to be the size of the version space represented
by that configuration. In particular, the weightWc′(S, r′, k′) of the triple(S, r′, k′) in a
configuration with mistake budgetc′ is

r′+k′∑
i=0

(
c′

i

)[(
i

≤ r′

)
−
(

i

≤ i− k′ − 1

)]
,

and the weight of a configurationC, Wc′(C), is the sum of the weights of the triples inC.
Triples (S, r′, k′) where eitherr′ < 0 or k′ < 0 represent sequences disallowed by our
assumptions, and these disallowed triples are given weight 0. Deleting disallowed triples
from a configuration has no effect on the strategy’s predictions.

On each trial theCbin conversion strategy in configurationC receives the new instancex
and computes the weights of the two successor states,Cx,1 andCx,0. TheCbin conversion
strategy predicts 1 if the weight ofCx,1 is greater than the weight ofCx,0 and 0 otherwise.
If the Cbin strategy predicted correctly, it keeps the configurationC. If the Cbin strategy
predicted incorrectly, then it changes its configuration fromC toCx,b whereb is the outcome
of the current trial.

A sketch of the conversion strategyCbin is given in Figure 3.1. The algorithmCbin can
be further improved in the same way that BW′ improved BW (See Section 2). However
these changes do not improve the worst-case mistake bounds, and thus we chose not to
include them for the sake of the simplicity of the presentation.

The next result shows some useful properties of sequences of configurations.

Lemma 5 For all conservative, deterministic prediction algorithmsA, all subsequence
closed setsΣ ⊆ (X × {0, 1})∗, and allr ∈ N, if

• k ≥ max{LA(u) : u ∈ Σ},

• s = 〈(xt, yt)〉 in (X × {0, 1})+ is anr-corrupted version of a sequence inΣ, and

• C0 is the configuration with mistake budgetc0 = g containing the single triple(Sinit, r, k)
whereSinit is the initial state ofA, and

• C0, C1, . . . , Cg is the sequence of distinct configurations generated by a run ofCbin

applied toA on the sequencess,

then

1. for eacht = 0, 1, . . . , g − 1,
Wct(Ct) = Wct−1(Cxt+1,0

t) +Wct−1(Cxt+1,1
t) ≥Wct−1(Ct+1)

wherect is the mistake budget ofCt, and

2. for eacht = 0, 1, . . . , g,Wg(Ct) ≥ 1;

96 N. CESA-BIANCHI, ET AL.

StrategyCbin

Input: Two positive integersr, k, and a prediction algorithmA with initial stateSinit.

1. Letg = m+ 1, where

m := max {q ∈ N : q ≤ log(size(r, k, q))} (12)

2. Initialize configurationC0 to have mistake budgetc0 = g and contain the single triple
(Sinit, r, k).

3. For each trialt = 1, 2 . . .

(A) Get thetth observationxt.

(B) Compute the successorsCxt,0t−1 andCxt,1t−1 of the current configurationCt−1.

(C) Predict withp ∈ {0, 1} such that

Wct−1−1(Cxt,pt−1) = max{Wct−1−1(Cxt,0t−1),Wct−1−1(Cxt,1t−1)}

(predict arbitrarily in case of a tie.)

(D) Get the outcomeyt.

(E) If p 6= yt then decrease the mistake budget and update the current configuration
by settingCt := Cxt,ytt−1 ; if p = yt, then keep the current configuration by setting
Ct := Ct−1.

Figure 3. Pseudo-code for the conversion strategyCbin.

The proof of Lemma 5 is given in Appendix D.

Proof of Theorem 7: Choosen, k ∈ N and a sequencesn ∈ (X × {0, 1})n that is an
r-corrupted version of someu ∈ Σ. Let m be the integer defined by formula (9) and,
assume to the contrary thatCbin(r, k, A) makes at leastg = m+ 1 mistakes ons. Let ` be
the trial on whichCbin(r, k, A) makes itsgth mistake andc′ the mistake budget after the
`th trial. We will show that

Wc′(C`) ≤
Wg(C0)

2g
(13)

< 1. (14)

Let t1, t2, . . . , tg be the trials at which algorithmCbin makes its firstg mistakes andu′ be
the associated subsequence ofu. SinceΣ is closed under subsequences,u′ ∈ Σ. We apply
Lemma 5 to sequenceu′ and the associated sequenceC0, Ct1 , . . . , Ctg of configurations
generated by the algorithm. By construction, the algorithm predicts on each trialt (1 ≤
t ≤ n) according to the heaviest successor of the current configurationCt−1. The current

ON-LINE PREDICTION AND CONVERSION STRATEGIES 97

configuration is unchanged ifCbin predicts correctly. If the algorithm makes a mistake
on trial t, the successorCxt,ytt−1 corresponding to the correct predictionyt becomes the
new current configuration. Because algorithmCbin predicts on each trial according to the
heaviest successor, it follows from part 1 of Lemma 5 thatWg−1(Ct1) ≤Wg(C0)/2 and that
Wcj−1(Ctj+1) ≤ Wcj (Ctj)/2, for 2 ≤ j ≤ g, wherecj (for 1 ≤ j ≤ g − 1) is the mistake
budget ofCtj . This implies inequality (13). By definition ofm in (9) and the fact that
g = m + 1 we derive inequality (14). Now part 2 of Lemma 5 shows thatWcg (Ctg) ≥ 1,
contradicting (14). ThusCbin makes at mostm = g−1 mistakes ons, concluding the proof.

A good consequence of the fact thatCbin is conservative is that the number of triplets
does not increase on trials whereCbin predicts correctly. However, it seems that the
number of triples kept by algorithmCbin can potentially double each timeCbin makes an
incorrect prediction. We now show that this apparent worst-case behavior is not possible,
and that the maximum number of triples in any configuration ofCbin(r, k, A) is bounded
by
(

m
≤min{r,k}

)
= O(mmin{r,k}), wherem is the number of mistakes made byCbin before

the configuration is reached.

Theorem 10 For all conservative, deterministic prediction algorithmsA, and all sub-
sequence closed setsΣ ⊆ (X × {0, 1})∗, if

• k ≥ max{LA(u) : u ∈ Σ},

• s = 〈(xt, yt)〉 is anr-corrupted version of some sequence inΣ,

• C0 is the configuration with some mistake budgetmcontaining the single triple(Sinit, r, k)
whereSinit is the initial state ofA, and

• C0, C1, . . . , Cm is the sequence of distinct configurations generated by a run ofCbin

applied toA on the sequencess,

then for each1 ≤ t ≤ m, configurationCt contains at most
(

t
≤min{r,k}

)
triples with nonzero

weight.

Proof: We prove the theorem whenr = min{r, k}, the other case is similar. For all
t = 0, 1 . . . ,m and0 ≤ i ≤ r let Mt(i) be the number of triples(S, r′, k′) ∈ Ct with
r′ = r − i. ThusM0(0) = 1 (for the initial configuration), andM0(i) = 0 for all i > 0.
Note that some triples counted inMt(r − r′) might have 0 weight if theirk′ < 0.

From the definition of successors,Mt+1(i) ≤Mt(i) +Mt(i− 1). The unique function
f = f(t, i) satisfying

f(0, 0) = 1,
f(0, i) = 0, for 1 ≤ i ≤ r,

f(t+ 1, i) = f(t, i) + f(t, i− 1), for t > 0 and1 ≤ i ≤ r,

is the binomial coefficient
(
t
i

)
. ThereforeMt(i) ≤

(
t
i

)
yielding that the number of triples

(S, r′, k′) in Ct with 0 ≤ r′ ≤ r is at most

98 N. CESA-BIANCHI, ET AL.

r∑
i=0

Mt(i) ≤
r∑
i=0

(
t

i

)
=
(

t

≤ r

)
,

as desired.

3.2. The conversion strategyCexp

We now move on to the description of the conversion strategyCexp. WhereCbin was based
on binomial weights,Cexp uses exponential weights. The advantage of using exponential
weights is that the conversion strategy does not need to know the boundsr andk thatCbin

requires as inputs. However if one wants to optimize the mistake bound ofCexp so that it
is in the form2(r + k) plus a square root term, then knowledge ofk andr is required for
Cexp as well. Analogously toCbin, the bound ofCexp does not depend on the length of the
sequence to predict. The weighting scheme used byCexp has two real parameters,α and
β, such that0 ≤ α, β < 1.

Here we define a configuration by a set of triples for different computations of algorithm
A. Unlike the description of strategyCbin given before, here a configuration does not
have a mistake count or mistake budget. However, as before each triple is of the form
(S, i, j) whereS is a possible state of algorithmA andi, j are both integers. For any fixed
0 ≤ α, β < 1, the weightWα,β(S) of the triple(S, i, j) is the productα−iβ−j . As before,
the weight of a configuration,Wα,β(C), is the total weight of the triples inC. The role
played here by the componentsi andj in each triple is analogous to the role respectively
played by the componentsr′ andk′ in the triple(S, r′, k′) defining algorithmCbin.

We use essentially the same definition of successors as the one introduced in Section 3.1
for the strategyCbin with only two differences. Namely, the mistake count is absent and a
triple is never removed since its weight never drops to 0. Note also thati, j can be negative.

A sketch of the conversion strategyCexp, using the above weighting scheme, is given in
Figure 4. The next lemma establishes some properties of such weighting schema.

Lemma 6 For all conservative and deterministic prediction algorithmsA, and all subse-
quence closed setsΣ ⊆ (X × {0, 1})∗, if

• s = 〈(xt, yt)〉 is anr-corrupted version of some sequenceu ∈ Σ,

• C0, C1, . . . , Cn is the sequence of distinct configurations generated by a run ofCexp

applied toA on the sequences, and

• α, β ∈ [0, 1),

thenWα,β(Cn) ≥ αdC(u,s)βLA(u), and for eacht = 1, . . . , n

Wα,β(Ct) ≤
(

1 + α+ β

2

)
Wα,β(Ct−1),

The proof of this lemma is an easy generalization of Littlestone and Warmuth’s proof of
the worst-case bound for the Weighted Majority algorithm (Littlestone & Warmuth, 1994).

ON-LINE PREDICTION AND CONVERSION STRATEGIES 99

StrategyCexp
12

Input: Two real numbersα, β such that0 ≤ α, β < 1 and a prediction algorithmA with
initial stateSinit.

1. Initialize configurationC0 to contain the single triple(Sinit, 0, 0).

2. On each stept = 1, 2, . . .

(A) Get thetth observationxt.

(B) Compute the successor configurationsCxt,0t−1 andCxt,1t−1 of the current configuration
Ct−1.

(C) Predict withp ∈ {0, 1} such that

Wα,β(Cxt,pt−1) = max{Wα,β(Cxt,0t−1),Wα,β(Cxt,1t−1)}

(predict arbitrarily in case of a tie.)

(D) Get the outcomeyt.

(E) If p 6= yt, then update the current configuration by lettingCt := Cxt,ytt−1 ; or, if
p = yt, let Ct := Ct−1.

Figure 4. Pseudo-code for the conversion strategyCexp.

We now turn to the proof of the worst-case mistake bound for the conversion strategyCexp.

Proof of Theorem 8: Choose any sequences = 〈(xt, yt)〉 and chooseu ∈ Σ. By
construction,Cexp predicts on each stept according to the heaviest successor of the current
configurationCt. If a mistake occurs, then the successorCxt,ytt−1 , corresponding to the correct
predictionyt, becomes the new current configuration. Moreover, again by construction
of Cexp, the current configuration is unchanged if the algorithm predicts correctly. We
can therefore apply Lemma 6 to the subsequences′ ⊆ s determined by the sequence
t1, t2, . . . , tm of the indices of the prediction trials whereCexp makes a mistake. SinceΣ
is subsequence-closed, the subsequenceu′ of u that corresponds to these trials lies inΣ.
By applying part 1 of the same lemma, and given thatα + β < 1, we conclude that the
total weight of the current configuration decreases by a factor of at least1+α+β

2 each time
Cexp makes a mistake. Also,dC(s′,u′) ≤ dC(s,u) and hence, ifCfin is the configuration
following the last prediction mistake made byCexp ons, part 2 of Lemma 6 implies that

Wα,β(Cfin) ≥ αdC(s,u)βLA(u′).

Hence, assumingCexp(α, β) makesm mistakes ons and recalling thatWα,β(C0) = 1,(
1 + α+ β

2

)m
≥Wα,β(Ct) ≥ αdC(s,u)βLA(u′).

100 N. CESA-BIANCHI, ET AL.

Solving form, recalling thatm is integer, yields

m ≤
⌊
dC(s,u) log 1

α + LA(u′) log 1
β

log 2
1+α+β

⌋
.

Sinces ∈ (X × {0, 1})+ andu ∈ Σ were chosen arbitrarily, the proof is concluded.

We conclude this section by proving the last of the three theorems stated in Section 3.
We will need a preliminary lemma.

Lemma 7 For all k, r,m ∈ N and for allα, β ∈ [0, 1), if α+ β < 1 andm ≥ r+ k then

r+k∑
i=0

(
m

i

)(
i

≤ k

)
≤ (1 + α+ β)m

αrβk
.

Proof of Lemma 7: By a double application of the Binomial Theorem we show

(1 + α+ β)m =
m∑
i=0

(
m

i

)
(α+ β)i ≥ αkβr

r+k∑
i=0

(
m

i

) k∑
j=0

(
i

j

)
.

Proof of Theorem 9: We shall upper bound the maximal value of a larger set.

max

{
q ∈ N : q ≤ log

r+k∑
i=0

(
q

i

)(
i

≤ k

)}
≤
⌊
r log 1

α + k log 1
β

log 2
1+α+β

⌋
. (15)

It is easy to see thatr + k is a lower bound on the number of mistakes of any master
algorithm. The left-hand side of (11) is an upper bound on the number of mistakes made
byCbin, therefore it is larger thanr + k. Thus we can apply Lemma 7 to (15) obtaining

max

{
q ∈ N : q ≤ log

r+k∑
i=0

(
q

i

)(
i

≤ k

)}
= max

{
q ∈ N : 2q ≤

r+k∑
i=0

(
q

i

)(
i

≤ k

)}

≤ max
{
q ∈ N : 2q ≤ (1 + α+ β)q

αrβk

}
= max

{
q ∈ N : q ≤

r log 1
α + k log 1

β

log 2
(1+α+β)

}

=

⌊
r log 1

α + k log 1
β

log 2
(1+α+β)

⌋
.

If we give Cexp an additional input parameterk such thatk ≥ maxu∈Σ LA(u′), the
strategy can exploit this information in order to minimize the number of states in each

ON-LINE PREDICTION AND CONVERSION STRATEGIES 101

configuration. In particular,Cexp can discard from the current configuration each triple
(S, i, j), such thatj ≥ k. By using this trick, we can show, analogously to what we did
for Cbin in Theorem 10, that the maximum number of triples in each configuration of
Cexp(α, β,A, k) is bounded byO(

(
m
k

)
), wherem is the number of mistakes made byCexp

up to the current configuration.
Furthermore, as we mentioned above, the knowledge of boundsr or k can be used to

optimize the parametersα andβ.
Note that both the conversion strategyCbin andCexp are conservative in the sense that they

only update their configuration when they make a mistake. At least one copy of algorithm
A receives only the subsequence of clean examples on which the conversion strategies
makes a mistake. Therefore we require that the mistake bound of algorithmA holds on all
subsequences of sequences inΣ. This is the reason we assumed that the set of sequencesΣ
in Theorems 7 and 8 is subsequence-closed. We would like conversion strategies that do not
require this assumption. It seems that this is possible only for a mistake bound that increases
with the length of the sequence. If we somehow could giveA the “correct” feedback in
trials in which the conversion strategy makes no mistake, then we could drop the assumption
and update the configuration in all trials. The simple method of using the prediction of the
conversion strategy as feedback does not work. This is illustrated by the following example.
Assume the original algorithmA predicts 0 in the first trial and afterwards it simply predicts
always with the label of the first example. Now let the sequence of examples be labeled as
〈0, 1, 1, 1, · · ·〉. The conversion strategy will correctly predict 0 in the first trial and feeding
0 toA will “spoil” A. If we want to update in each trial, then we need to simulate noise
and mistakes on all trials and this will lead to increased mistake bounds.

4. Conclusions

We have investigated the problem of on-line boolean prediction from two different view-
points. We first improved known results about strategies that predict deterministically
using the advice from a set of experts. These improvements are obtained using a weighting
scheme that uses Binomial coefficients rather than exponential weights of the formβm.
These binomial coefficients can be interpreted as counting the members of an appropriate
version space. In the expert setting the mistake bound based on binomial weights is never
larger than the mistake bound based on exponential weights. Furthermore, the advantage of
the binomial weights can be made arbitrarily large. Nevertheless both bounds can be shown
to have the optimum leading term using probabilistic techniques. We also prove that, for
an infinite subset of the possible problem parameters, the bound using binomial weights is
best possible. The proof of this fact relies on a new translation of our prediction problem
to Ulam’s game with lies.

Secondly, we introduced a novel approach for making on-line algorithms robust to noise.
We show how to convert an on-line prediction algorithm that is guaranteed to make at mostk
mistakes when given an observation-outcome sequence from its domain into an algorithm
that works well when up tor of the outcomes are corrupted by noise. The converted
algorithm has a conjectured mistake bound of

102 N. CESA-BIANCHI, ET AL.

2(r + k) + 2
√
rk ln(e− 1 + max(r, k)/min(r, k)) + 2.807

√
rk

on any of the corrupted sequences (the conjecture is supported by numerical evidences.)
The best lower bound we know of is2r + k; tightening the gap between these bounds
remains an open problem.

Based on our experience, binomial weights seem to lead to better mistake bounds than
exponential weights. They have the advantage of being motivated by a version space
argument that leads to a deeper understanding of the on-line learning problem. The ex-
ponential weights seem to approximate the binomial weights and are sometimes easier to
use, especially when the number of mistakes made by the best expert is unknown (although
optimizing their mistake bounds requires knowledge of these parameters as well). Also
exponential weights can be used for designing randomized prediction algorithms. In the
case of exponential weights the worst-case expected number of mistakes of the randomized
algorithm is exactly half of the worst-case number of mistakes of the deterministic algo-
rithm (Littlestone & Warmuth, 1994, Cesa-Bianchi, et al., 1995). We were unable to find a
randomized binomial weighting algorithm that had an expected mistake bound significantly
smaller than the deterministic BW algorithm.

Acknowledgments

David P. Helmbold was supported by NSF grant CCR-9102635. Manfred Warmuth and
Yoav Freund were supported by ONR grant N00014-91-j-1162. Part of this research
was done while Nicol`o Cesa-Bianchi was visiting UC Santa Cruz partially supported
by the “Progetto finalizzato sistemi informatici e calcolo parallelo” of CNR under grant
91.00884.69.115.09672, and the Institute for Theoretical Computer Science at the Graz
University of Technology (Austria).

Appendix A

A prediction algorithm that is strictly optimal for a large number of experts

As was shown in Section 2.3, the number of mistakes that the BW algorithm makes is within
one from optimal whenN , the number of experts, is large enough. In fact, we have shown
that, for most values ofN , BW obtains strict optimality. In this section we describe a variant
of BW, which we call EBW (Enhanced Binomial Weighting), that achieves optimality in
the worst case forall sufficiently large values ofN . This modification and its analysis is a
direct adaptation of a result of Spencer’s ((Spencer, 1992), Section 3).

As we have seen in the proof of Theorem 5, the only slack which allows for the gap
between the upper and the lower bounds is in the way the game is played for the firstk
trials. In these trials there are no pennies available to Paul and thus he may not be able to
split the chips into two sets of equal weight. When the weights do not split evenly, then
Carol can choose a next configuration whose weight is less than half of the current one.
From some starting configurations Carol can reduce the weight fast enough to “save” a
mistake. However, the value ofm chosen by the BW algorithm ignores this possibility of

ON-LINE PREDICTION AND CONVERSION STRATEGIES 103

saving a mistake. Thus, since it is using the “wrong” weights, BW might play suboptimally
and miss the opportunity to save a mistake. The solution is to refine the calculation ofm
used by the BW algorithm to account for the savings from when Paul is forced to split
unevenly. We call the resulting algorithm EBW, and (for large enoughN) this strategy is
the best possible as there also exists a refined strategy for Paul that can force any algorithm
to make the exact same number of mistakes.

The key observations are that the weight of every configuration is a multiple of the greatest
common divisor (gcd) of the chip weights, and that aftert < k trials all of the chips are
in bins0 throught. Thus, on the first trial, Carol can ensure not only that the weight goes
down by at least a factor of 2, but also that it is divisible by the gcd of the (new) weights of
the first two bins. After the second trial Carol can again reduce the weight by at least half,
in addition to being divisible by the (new) weights of the first three bins, and so forth.

We now describe the EBW algorithm. Recall step 1 in BW (Figure 1), in this step the
bound on the number of mistakes,m, is calculated. Algorithm EBW has an additional step
1∗, between steps 1 and 2 of BW. In this step EBW checks if there will be enough unevenness
in the partitions to guarantee that at mostm − 1 mistakes will be made. Specifically, it
computes a new variable,m∗ that is equal to eitherm or m − 1. The value ofm∗ is an
improved upper bound on the worst case number of mistakes. The rest of the algorithm
stays almost the same, the only difference being thatm∗ is used instead ofm in steps 2 and
3.

We now describe the computation ofm∗ in step1∗. First, the algorithm checks ifN−2k ≥
d2m/

(
m
≤k
)
e. If the inequality holds, then it is known from Theorem 5 that the bound cannot

be improved andm∗ is set to bem. Otherwise, a reduction of one errormightbe possible.
As observed above, the total weight of any configuration is a multiple of the gcd of the
weights of the chips. The algorithm computes these common divisors for each of the first
k configurations1 ≤ i ≤ k:

Ai
def= gcd

((
m− 1− i

k

)
,

(
m− 1− i
k − 1

)
, . . . ,

(
m− 1− i
k − i+ 1

))
.

It then calculates the initial weight that corresponds tom− 1

V0
def= N

(
m− 1
≤ k

)
.

Using these values, the observations given above, and the fact that the algorithm can reduce
the total weight at each step by at least a factor of two, the algorithm calculates an upper
bound onWm−i(Ii) for 1 ≤ i ≤ k:

Vi
def= max

{
j ∈ N : j ≡ V0 modAi, andj ≤ Vi−1

2

}
.

If Vk ≤ 2m−1−k then the algorithm can guarantee at mostm − 1 mistakes, andm∗ is set
tom− 1. If the condition does not hold, thenm∗ is set tom.

It remains to be shown that the number of mistakes made by EBW is at mostm∗ and that
no other algorithm can make a smaller number of mistakes for large enough values ofN .
The proof of both of these claims is based on showing the the upper boundsVi are tight,
the proof is a direct translation of the proof of the theorem in section 3 of (Spencer, 1992).

104 N. CESA-BIANCHI, ET AL.

Appendix B

Proof of Lemma 1

Since up(N, k, β) = (logN + k log 1
β)/ log 2

1+β we have

∂up(N, k, β)
∂β

= − k

β ln 2
1+β

+
up(N, k, β)

(1 + β) ln 2
1+β

.

Note thatln 2
1+β > 0 sinceβ ∈ [0, 1). So the equivalence between (a.) and (b.) is easily

verified by setting the above derivative to 0, multiplying byβ(1 + β) ln 2
1+β , and solving

for β. The equivalence between (b.) and (c.) is obtained by substitutingβ = k
m−k into

(b.) and solving form. To show equivalence between (c.) and (d.) we multiply (c.) by the
denominator of up(N, k, k

m−k).
Usinglog 2

1+ k
m−k

= 1 + log(1− k
m) we get the inequality

m ≥ logN − k log
k

m− k −m log
(

1− k

m

)
(B.1)

whose right-hand side equalslogN +mH(km).
Note that2k < logN + 2kH(1

2), som ≤ logN + mH(km) for m close to2k. Since
H(km) < 1 for m > 2k, the left-hand side of (B.1) grows faster than the right-hand side
(as a function ofm). Thus there will be exactly onem∗ wherem∗ = logN +m∗H(k

m∗).
From the equivalences it follows that∂up/∂β evaluated atβ = β∗ = k

m∗−k is 0, and this
β∗ is the unique minimizer of up(N, k, β).

Appendix C

Proof of Equation (7)

Suppose for contradiction that the limit in (7) does not hold.
Since0 ≤ Low(Ni, ki)/up(Ni, ki, β∗i) ≤ 1, there is a subsequenceω′ = {(N ′i , k′i)}i∈N
of ω such thatlimi→∞

Low(N ′i ,k
′
i)

up(N ′
i
,k′
i
,β∗
i
′) converges to some constant less than 1.

We now consider two cases based on the limiting behavior ofk′i/ logN ′i asi→∞.
The first case is when{k′i/ logN ′i}i∈N has an accumulation point at 0 or infinity.

This means that there is an infinite subsequenceω′′ = {(N ′′i , k′′i)}i∈N of ω′ such that
limi→∞ k′′i / logN ′′i = 0 or limi→∞ k′′i / logN ′′i = ∞. In either case we use the upper
bound on the function “up” proven in (Cesa-Bianchi, et al., 1995),

up(N, k, β∗) ≤ logN + 2k + 2
√
k lnN (C.1)

to get

lim
i→∞

Low(N ′′i , k
′′
i)

up(N ′′i , k
′′
i , β

∗
i
′′)
≥ lim

i→∞

logN ′′i + 2k′′i
logN ′′i + 2k′′i + 2

√
k′′i lnN ′′i

ON-LINE PREDICTION AND CONVERSION STRATEGIES 105

= lim
i→∞

1 + 2k′′i / logN ′′i
1 + 2k′′i / logN ′′i + 2

√
k′′i / logN ′′i

= 1.

Sinceω′′ is a subsequence ofω′ this contradicts the assumption thatLow(N ′i ,k
′
i)

up(N ′
i
,k′
i
,β∗
i
′) converges

to a constant strictly less than 1.
For the other case we assume that there are positive constantsa andb such that

a ≤ k′i/ logN ′i ≤ b (C.2)

for all i. Thus bothN ′i andk′i go to infinity. For the remainder of the proof we only deal
with the sequenceω′ = {(N ′i , k′i)}i∈N and thus we can simplify our notation by dropping
the primes.

Letm∗i denote up(Ni, ki, β∗i). Recall from Lemma 1 thatm∗i > 2ki and thatm∗i is the
largest real solution to the equation

x = logNi + xH

(
ki
x

)
.

Similarly, definem̂i as the largest real solution of the equation

x = logNi + log
(

x

≤ ki

)
− log

(
1 + ln

(
x

≤ ki

))
. (C.3)

We will now show thatm̂i > (2 + 1
2b)ki. Sincelimi→∞ ki = ∞, for large enoughi

we have(2 + 1
2b)ki < ki/b + 2ki − 1 − log (1 + (2ki − 1) ln 2). Using logNi ≥ ki/b

and
(

2ki
≤ki

)
= 22ki−1 we obtain(2 + 1

2b)ki < logNi + log
(

2ki
≤ki

)
− log

(
1 + ln

(
2ki
≤ki

))
for

sufficiently largei. Next we observe that (a) the right-hand side of equation (C.3) increases
with x and (b) whenx is very large,x is larger than the right-hand side of equation (C.3).

Therefore, ify < z < logNi + log
(
y
≤ki

)
− log

(
1 + ln

(
y
≤ki

))
, thenz < m̂i. Applying

this withy = 2ki andz = (2 + 1
2b)ki proves that

m̂i >

(
2 +

1
2b

)
ki, (C.4)

wheni is sufficiently large.
Finally, definemi as the maximum of2ki + logNi andm̂i. Note thatmi is within 1 of

Low(Ni, ki). As we are interested in asymptotics, we usemi instead of Low(Ni, ki). In
addition,

m̂i ≤ mi ≤ m∗i (C.5)

and, by (C.1) and (C.2)

m̂i ≤ 2ki + logNi + 2
√
ki lnNi ≤ ki

(
2 +

1
a

+ 2
√

ln 2

√
1
a

)
(C.6)

106 N. CESA-BIANCHI, ET AL.

Sinceki → ∞ for i → ∞, it follows from (C.4) thatm̂i → ∞ as well. We now examine
the asymptotic behavior of̂mi in more detail.

m̂i = logNi + log
(
m̂i

≤ ki

)
− log

(
1 + ln

(
m̂i

≤ ki

))

= logNi + log
(
m̂i

≤ ki

)
−

log
(

1 + ln
(
m̂i
≤ki

))
logNi + log

(
m̂i
≤ki

) [logNi + log
(
m̂i

≤ ki

)]

= logNi + log
(
m̂i

≤ ki

)
− o(1)

[
logNi + log

(
m̂i

≤ ki

)]
sincem̂i →∞

= (1− o(1))
[
logNi + log

(
m̂i

≤ ki

)]
(C.7)

= (1− o(1))
[
logNi + m̂iH

(
ki
m̂i

)]
. (C.8)

To get (C.8) we use the identitylog
(
m
≤k
)

= mH(k/m) − 1
2 logm + O(1), which holds

whenm goes to infinity andm/2k is bounded away from both 0 and 1/2 (Graham, Knuth &
Patashnik, 1989, exercise 9.42). Sinceki/m̂i is bounded away from both 0 and 1/2 for
largei (see (C.4) and (C.6)), we have thatH(k/m) is at least some constant depending

only ona andlog
(
m̂i
≤ki

)
= (1− o(1))m̂iH(ki/m̂i).

Let fi(x) = logNi+xH(ki/x). From the definition ofm∗i we know thatm∗i = fi(m∗i).
Equation (C.8) means that for anyε > 0 there exists someiε such that for alli > iε,
m̂i(1 + ε) ≥ fi(m̂i). Recall thatm̂i ≤ mi ≤ m∗i . We need to show thatmi ∼ m∗i .

To do this we first uniformly bound the derivatives of the functionsfi(x) in some ranges.
Notice thatf ′i(x) = log(x/(x− ki)). Thus for allx ≥ 2ki + logNi,

f ′i(x) ≤ log
2ki + logNi
ki + logNi

≤ log
(

1 +
1

1 + ki/ logNi

)
.

Sinceki/ logNi ≥ a we get thatf ′i(x) ≤ 1− c, for somec > 0 independent ofi.
Using the mid-point theorem, we can lower boundfi(mi) in the following way:fi(mi) =

fi(m∗i)− f ′i(θ)(m∗i −mi) for somemi ≤ θ ≤ m∗i . Using the bound on the derivative we
get that

fi(mi) ≥ fi(m∗i)− (1− c)(m∗i −mi) = c(m∗i −mi) +mi. (C.9)

On the other hand,̂mi(1+ε) ≥ fi(m̂i), andf ′i(x) ≤ 1 for all x ≥ 2ki. Asmi ≥ m̂i ≥ 2ki,
(see (C.4)) we get that

fi(mi) ≤ (1 + ε)mi. (C.10)

Combining (C.9) and (C.10) we get thatc(m∗i −mi) +mi ≤ (1 + ε)mi. This implies that
m∗i /mi ≤ (c+ ε)/c. As we can chooseε arbitrarily small, we get thatmi ∼ m∗i .

ON-LINE PREDICTION AND CONVERSION STRATEGIES 107

Appendix D

Proof of Lemma 5

To prove part 1 we show, for each triple(S, r′, k′), that the sum of the weights of the
successor triples equals the weight of the original. That is, if the example isxt, yt then

Wct−1(S, r′, k′) +Wct−1(Sxt,yt , r′ − 1, k′) +Wct−1(S, r′, k′ − 1)

=
r′+k′∑
j=0

(
ct − 1
j

)[(
j

≤ r′

)
−
(

j

≤ j − k′ − 1

)]

+
r′+k′−1∑
j=0

(
ct − 1
j

)[(
j

≤ r′ − 1

)
−
(

j

≤ j − k′ − 1

)]

+
r′+k′−1∑
j=0

(
ct − 1
j

)[(
j

≤ r′

)
−
(

j

≤ j − k′

)]

=
r′+k′∑
j=0

(
ct − 1
j

)[(
j

≤ r′

)
−
(

j

≤ j − k′ − 1

)]

+
r′+k′−1∑
j=0

(
ct − 1
j

)
+
[(
j + 1
≤ r′

)
−
(

j + 1
≤ j − k′

)]

=
r′+k′∑
j=0

(
ct − 1
j

)[(
j

≤ r′

)
−
(

j

≤ j − k′ − 1

)]

+
r′+k′∑
j=1

(
ct − 1
j − 1

)
+
[(

j

≤ r′

)
−
(

j

≤ j − k′ − 1

)]

=
r′+k′∑
j=0

(
ct
j

)[(
j

≤ r′

)
−
(

j

≤ j − k′ − 1

)]
= Wct(S, r

′, k′).

To prove part 2 choose a sequenceu in Σ and lets = 〈(xt, yt)〉 be ar-corrupted version
of u. Let v be the subsequence ofs containing all the pairs(xt, yt) whereCbin makes
a mistake by predicting1 − yt. Letw be the subsequence ofv obtained by deleting the
examples corrupted by noise. Finally, for eacht ≥ 1 let p(t) ≤ t be the number of
uncorrupted examples invt (recall thatvt is the lengtht prefix of v), so t − p(t) is the
number of corrupted examples invt andwp(t) is the sequence obtained fromvt by deleting
the corrupted examples.

LetC(vt) be the set of(S, r′, k′) triples inCbin’s configuration immediately afterCbin

has seen the sequencevt. Recall thatC(v0) = {(Sinit, r, k)}, and a triple(S, r′, k′) is
discarded from the configuration if eitherr′ < 0 or k′ < 0.

To prove the statement in part 2 of the lemma it suffices to prove the following claim.

Claim. For each0 ≤ t ≤ |v|, there is a triple(S, r′, k′) ∈ C(vt) such that:

108 N. CESA-BIANCHI, ET AL.

1. S is the state ofA(wp(t)),

2. 0 ≤ k − k′ is the number of mistakes made byA on sequencewp(t), and

3. 0 ≤ r − r′ ≤ t− p(t), the number of corrupted trials invt.

Proof of Claim: First note thatw is a subsequence ofu, soA makes at mostk mistakes
onw. Furthermore,v is a subsequence ofs ands contains at mostr noisy examples, sov
contains at mostr noisy trials. Therefore bothk − k′ andr − r′ are at least 0.

We now prove by induction ont that an appropriate triple is in the configurationC(vt).
For the base case considert = 0, and recall thatp(0) = 0. There is only one triple,
(Sinit, r, k) in C(v0). Sincew0 is the empty sequence,A(w0) = Sinit, andA makes no
mistakes on sequencew0. Thus all three conditions are satisfied by this triple.

For the inductive step assume some triple(S, r′, k′) ∈ C(vt) satisfies the three conditions
of the claim. We now show that either(S, r′, k′) or one of its successors inC(vt+1) also
satisfies the claim
Case 1: the t + 1st trial is a corrupted trial, sowp(t+1) = wp(t). If AS agrees with the
corrupted outcome, then(S, r′, k′) is also inC(vt+1), and the three parts of the claim
continue to hold. IfAS disagrees with the corrupted outcome then(S, r′ − 1, k′) is in
C(vt+1) and sincevt+1 has one more corrupted trial thanvt, the three parts of the claim
also holds forC(vt+1).
Case 2: the t + 1st trial is not a corrupted trial, sovt+1 = wp(t)+1 = wp(t+1). If AS
predicts correctly onwp(t)+1, then the triple(S, r′, k′) remains in the configuration. Also,
sinceA is conservative,S = A(wp(t)+1) = A(wp(t+1)) and the claim holds forC(vt+1).
If AS predicts incorrectly then so doesA(wp(t)). ThusA makesk − k′ + 1 mistakes
onwp(t+1). Let e be the examplewp(t+1) and thusSe is the stateA(wp(t+1)). In this
situation, the triple(Se, r′, k′ + 1) is inC(vt+1), satisfying the claim.

Notes

1. A similar approach can be taken for learning the best combination of experts, although different forms of the
weights are used when the loss of the master is to be close to the loss of the best convex (Littlestone, Long &
Warmuth, 1995) or linear (Cesa-Bianchi, Long & Warmuth, 1993) combination of experts.

2. The notion of “version space” for learning algorithms was originally introduced by Tom Mitchell in (Mitchell,
1977).

3. A weighting scheme based on the sum of binomial coefficients was first introduced by Berlekamp (1968).

4. Expanding each expert into
(
m
≤k
)

variants instead of
(
m+1
≤k
)

variants (wherem is defined as in Figure 1)
does not lead to the mistake bound ofm stated in Theorem 1. For example, consider the case where there is
N = 1 expert guaranteed to make at mostk = 1 mistake, som = 1. Assume the expert is expanded into just(
m
≤k
)

= 2 variants (one predicting as the expert and one predicting the other way), and the expert is correct on
the first trial. The master algorithm would see a tie vote and could predict as the variant and make a mistake.
Now only the (unmodified) expert is consistent, and the master will predict as the expert does. However, this
expert still has a mistake to make, and thus the master might make a total of two mistakes. Although the
number of consistent variants has been reduced to one (the original expert), the surviving variant may still
have mistakes to make. By considering

(
m+1
≤k
)

variants of each expert we guarantee that if only one variant
is consistent, then the expert producing that variant has already madek mistakes (and thus will be correct on
all future trials).

ON-LINE PREDICTION AND CONVERSION STRATEGIES 109

5. In the original algorithm expertE simply votes with weightβj for its own prediction. The more complicated
voting scheme given in the text is more similar to the voting scheme of the BW algorithm. Both variants of
the WM algorithm generate the same predictions.

6. The algorithms predict arbitrarily if the weights are tied.

7. These values are chosen to make the algebra tractable, rather than indicating a particular region of interesting
behavior.

8. An important point is that Carol does not have to “commit” to a specific numberx ahead of time. The
requirement is only that her choice of answers be such that at all times there existsx ∈ {1, . . . , N} that is
consistent with all but at mostk of her answers.

9. In this section we completely ignore the instancesxt that are given as inputs to the experts. Because we are
dealing with worst case lower bounds, we can assume that for anyS ⊆ E , there is always an observation
xS ∈ X that causes the experts inS to predict 1, and the experts not inS to predict 0. Thus the adversary
can control the predictions of the experts by choosing the appropriate observation.

10. In a subsequent paper (Auer & Long, 1994) a randomized variant of their conversion strategy is introduced.
The worst-case expected number of mistake of their randomized strategy is significantly lower than the worst-
case mistake bound of (the deterministic strategy)Cbin.

11. Recall from footnote D that usingc′ = m can lead to more thanm mistakes.

12. An alternative way of arriving at the same prediction is the following. Given an instancex each triple
(S, r′, k′) votes with weightα−r

′
β−k

′
for the prediction ofAS on the instancex. The master algorithm

then predicts with the vote that got the larger total weight. When this method of prediction is used the successor
configuration has to be computed only when a mistake occurs.

References

Aarts, E. & Korst, J. (1989).Simulated Annealing and Boltzmann Machines. John Wiley and Sons.
Alon, N., Spencer, J.H. & Erd˝os, P. (1992).The Probabilistic Method. John Wiley and Sons.
Angluin, D. (1988). Queries and concept learning.Machine Learning, 2:319–342.
Aslam, J.A. & Dhagat, A. (1991). Searching in the presence of linearly bounded errors. InProceedings of the

23rd ACM Symposium on the Theory of Computation, pages 486–493. ACM Press.
Auer, P. & Long, P.M. (to appear). Structural results about on-line learning models with and without queries.

Machine Learning.
Auer, P. & Long, P.M. (1994). Simulating access to hidden information while learning. InProceedings of the

26th ACM Symposium on the Theory of Computation, pages 263–272. ACM Press.
Bardzin, J.M. & Freivalds, R.V. (1972). On the prediction of general recursive functions.Soviet Math. Dokl.,

13:1224–1228.
Berlekamp, E.R. (1968).Error-Correcting Codes. John Wiley and Sons.
Cesa-Bianchi, N., Freund, Y., Helmbold, D.P., Haussler, D., Schapire, R. & Warmuth, M.K. (1995). How to use

expert advice. To appear inJournal of the ACM.
Cesa-Bianchi, N., Long, P.M. & Warmuth, M.K. (1996). Worst-case quadratic loss bounds for a generalization

of the Widrow-Hoff rule. IEEE Transactions on Neural Networks, 7(2): 604-619.
Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations.

Annals of Mathematical Statistics, 23:493–507.
Graham, R.L., Knuth, D.E. & Patashnik, O. (1989).Concrete Mathematics. Addison Wesley.
Kivinen, J. & Warmuth, M.K. (1994). Using experts for predicting continuous outcomes. InComputational

Learning Theory: Eurocolt ’93. The Institute of Mathematics and its Applications Conference Series, number
53, pages 109-120, Oxford: Oxford University Press.

Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.
Machine Learning, 2(4):285–318.

Littlestone, N. (1989). Mistake Bounds and Logarithmic Linear-threshold Learning Algorithms. PhD thesis,
University of California at Santa Cruz.

Littlestone, N., Long, P.M. & Warmuth, M.K. (1995). On-line learning of linear functions.Computational
Complexity, 5(1):1–23.

110 N. CESA-BIANCHI, ET AL.

Littlestone, N. & Warmuth, M.K. (1994). The weighted majority algorithm.Information and Computation,
108:212–261.

Mitchell, T.M. (1977). Version spaces: A candidate elimination approach to rule learning. InProceedings
International Joint Conference on Artificial Intelligence, pages 305–310, Cambridge, Mass.

Spencer, J. (1992). Ulam’s searching game with a fixed number of lies.Theoretical Computer Science, 95:307–
321.

Ulam, S. (1977).Adventures of a Mathematician. Scribners.
Vovk, V.G. (1990). Aggregating strategies. InProceedings of the 3rd Annual Workshop on Computational

Learning Theory, pages 372–383.

Received August 30, 1994
Accepted September 19, 1995
Final Manuscript July 15, 1996

