The material in this handout is taken from: Luca Trevisan, Lecture Notes on Graph Partitioning, Expanders and Spectral Methods, 2016.

Given a real $n \times n$ matrix M, if $Mu = \lambda u$ for some $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n \setminus \{0\}$, then u is an eigenvector of M with eigenvalue λ (we also say that u is an eigenvector of λ). Note that eigenvectors can be rescaled without changing the equation $Mu = \lambda u$, hence we conventionally assume they have unit length.

Note that λ is an eigenvalue for M if and only if there exists $x \neq 0$ such that $(M - \lambda I)x = 0$, where I is the $n \times n$ identity matrix. The equation $(M - \lambda I)x = 0$ holds for $x \neq 0$ if and only if $M - \lambda I$ is singular, which is equivalent to $\det(M - \lambda I) = 0$. Since $\det(M - \lambda I)$ is a n-th degree univariate polynomial in λ, it has exactly n solutions by the fundamental theorem of algebra. This shows that every square matrix has n eigenvalues (not all necessarily distinct). Some of these eigenvalues, however, may correspond to solutions of $\det(M - \lambda I) = 0$ in the complex plane. The next result guarantees that at least one eigenvalue is real when M is symmetric.

Fact 1 (proof omitted) If M is symmetric, then there exists $\lambda \in \mathbb{R}$ and $u \in \mathbb{R}^n \setminus \{0\}$ such that $Mu = \lambda u$.

Fact 2 If M is symmetric then any two eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let x be an eigenvector of λ and y an eigenvector of λ' with $\lambda \neq \lambda'$. Since M is symmetric, $(Mx)^\top y = x^\top My$. On the other hand, $(Mx)^\top y = \lambda x^\top y$ and $x^\top My = \lambda' x^\top y$. Since $\lambda \neq \lambda'$, it must by $x^\top y = 0$, which means that x and y are orthogonal. \square

Theorem 3 (Spectral Theorem) Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then there exists n (not necessarily distinct) real numbers $\lambda_1, \ldots, \lambda_n$ and n orthonormal real vectors u_1, \ldots, u_n such that u_i is an eigenvector of λ_i.

Proof. The proof is by induction on n. If $n = 1$, then M is a scalar. Hence, any nonzero $x \in \mathbb{R}$ is an eigenvector of M with eigenvalue M because $Mx = Mx$.

Assume now that the statement holds for $n - 1$. By Fact 1, there exist an eigenvalue $\lambda_n \in \mathbb{R}$ with eigenvector $x_n \in \mathbb{R}^n$.

Claim. y orthogonal to x_n implies My is orthogonal to x_n.

Indeed, $x_n^\top My = (Mx_n)^\top y = \lambda x_n^\top y = 0$.

1
Now let V be the $(n-1)$-dimensional subspace of \mathbb{R}^n that contains all the vectors orthogonal to x_n. Now choose an orthonormal basis u_1, \ldots, u_{n-1} for V and let $B = [u_1, \ldots, u_{n-1}]$. By construction, B maps \mathbb{R}^{n-1} to V and BB^T maps \mathbb{R}^n to V. In particular, $BB^T = z$ for all $z \in V$. We now apply the inductive hypothesis to the $(n-1) \times (n-1)$ symmetric matrix $M' = B^TMB$ and find real eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ and orthonormal eigenvectors $y_1, \ldots, y_{n-1} \in \mathbb{R}^{n-1}$. For $i = 1, \ldots, n-1$ we have $M'y_i = B^TMBy_i = \lambda_i y_i$. Therefore, $BB^TMBy_i = \lambda_i y_i$. Since $y_i \in \mathbb{R}^{n-1}$ and B maps \mathbb{R}^{n-1} to V, By_i is orthogonal to x_n and, by the above claim, MBy_i is orthogonal to x_n. Therefore $\lambda_i By_i = BB^TMBy_i = MBy_i$. If we now define $x_i = By_i$ for $i = 1, \ldots, n-1$, then we have $Mx_i = \lambda_i x_i$. To finish up, note that by construction x_n is orthogonal to x_1, \ldots, x_{n-1}. Moreover, for any $1 \leq i < j \leq n-1$, $x_i^T x_j = (By_i)^T (By_j) = y_i^T B^T By_j = y_i^T y_j = 0$. Hence we have found n eigenvalues with n eigenvectors.\[\square\]

Corollary 4 Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix. Then

$$M = U\Lambda U^T = \sum_{i=1}^{n} \lambda_i u_i u_i^T$$

where $U = [u_1, \ldots, u_n]$ and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Here $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ are the real eigenvalues of M and $u_1, \ldots, u_n \in \mathbb{R}^n$ are the corresponding eigenvectors.

Proof. Note that $MU = [\lambda_1 u_1, \ldots, \lambda_n u_n]$ because $Mu_i = \lambda_i u_i$ for each $i = 1, \ldots, n$. Hence $MU = U\Lambda$ where $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$. Since U is orthonormal, $U^{-1} = U^T$ and $UU^T = I$. Therefore $M = MUU^T = U\Lambda U^T$.\[\square\]

Theorem 5 (Variational characterization of eigenvalues — proof omitted) Let $M \in \mathbb{R}^{n \times n}$ be a real symmetric matrix, and $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ be its real eigenvalues. For $k < n$ let u_1, \ldots, u_k be orthonormal vectors such that $Mu_i = \lambda_i u_i$ for $i = 1, \ldots, k$. Then

$$\lambda_{k+1} = \min_{u \in \mathbb{R}^n \setminus \{0\}} \max_{u \perp \{u_1, \ldots, u_k\}} \frac{u^T Mu}{u^T u}$$

and any minimizer u is an eigenvector of λ_{k+1}.

The ratio in the right-hand side of the above equation is called **Rayleigh quotient**. Note that, in particular,

$$\lambda_1 = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^T Mu}{u^T u}.$$

Also, because $-M$ has eigenvalues $-\lambda_n \leq -\lambda_{n-1} \leq \cdots \leq -\lambda_1$,

$$-\lambda_n = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^T (-M) u}{u^T u} = - \max_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^T Mu}{u^T u}$$

and therefore

$$\lambda_n = \max_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^T Mu}{u^T u}.$$

A symmetric matrix M is **positive semidefinite** if $x^T M x \geq 0$ for all $x \in \mathbb{R}^n$.

2
Fact 6 The eigenvalues of a positive semidefinite matrix are all nonnegative.

Proof. As the denominator of the Rayleigh quotient is clearly always positive, Theorem 5 implies that the sign of each eigenvalue is determined by the sign of $x^T M x$. □

We conclude with a different but equally important characterization of eigenvalues.

Theorem 7 (Courant-Fischer — proof omitted) Let M be a real symmetric matrix with real eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Then

$$\lambda_k = \min_{S: \dim(S) = k} \max_{u \in S \setminus \{0\}} \frac{u^T M u}{u^T u} \quad k = 1, \ldots, n$$

where the minimum is over all subspaces S of dimension k.
