Intuitively, a graph is clusterable if its vertices can be partitioned (in a non-trivial way) so that the number of edges across the elements of the partition is small. A key notion is therefore that of cut between disjoint subsets of vertices. We study the clusterability of a graph through the algebraic properties of its adjacency matrix.

Given two disjoint subsets \(S, T \) of vertices of a graph \(G = (V, E) \), let \(E(S, T) \) be the set of edges having one endpoint in \(S \) and one endpoint in \(T \). Also, let \(\neg S = V \setminus S \).

The sparsity of a cut \((S, \neg S)\) is

\[
\sigma(S) = \frac{|E(S, \neg S)|}{|S| |\neg S|}.
\]

This is the fraction of edges in the cut among all potential edges between the two subset of vertices.

The sparsity of a graph is

\[
\sigma(G) = \min_{S \subseteq V : S \neq \emptyset} \sigma(S)
\]

In a \(d \)-regular graph, the expansion of a set \(S \subseteq V \) is defined by

\[
xpn(S) = \frac{|E(S, \neg S)|}{d|S|}
\]

and the conductance of a cut \((S, \neg S)\) defined by

\[
\phi(S) = \max \{ xpn(S), xpn(\neg S) \} = \frac{|E(S, \neg S)|}{d \min \{|S|, |\neg S|\}}
\]

Finally, the conductance of a graph is given by

\[
\phi(G) = \min_{S \subseteq V} \phi(S) \tag{1}
\]

As \(\alpha(1 - \alpha) \leq \min\{\alpha, 1 - \alpha\} \leq 2\alpha(1 - \alpha) \) for all \(\alpha \in [0, 1] \), we have

\[
\frac{1}{n} |S| |\neg S| \leq \min \{|S| |\neg S|\} \leq \frac{2}{n} |S| |\neg S|.
\]

Therefore, \(\phi(S) \leq \sigma(S) \leq 2\phi(S) \) and we have

\[
\phi(G) \leq \frac{n}{d} \sigma(G) \leq 2\phi(G).
\]

Hence, in \(d \)-regular graphs, finding the sparsest cut is equivalent — up to a factor of two — to finding a cut minimizing conductance. We now study the relationships between conductance and algebraic properties of the adjacency matrix.
Laplacian matrix. We focus on d-regular graphs for simplicity. The Laplacian matrix of a d-regular graph $G = (V, E)$ is the symmetric matrix $L = I - \frac{1}{d}A$, where A is the adjacency matrix with entries $A_{i,j} = \mathbb{I}\{(i,j) \in E\}$. For any $x \in \mathbb{R}^n$, we have that

\[
x^\top L x = \sum_{i \in V} x_i^2 - \frac{1}{d} \sum_{i \in V} \sum_{j \in V} A_{i,j} x_i x_j
= \frac{1}{d} \sum_{i \in V} \sum_{j : (i,j) \in E} x_i^2 - \frac{1}{d} \sum_{i \in V} \sum_{j : (i,j) \in E} x_i x_j
= \frac{1}{d} \sum_{i \in V} \sum_{j : (i,j) \in E} (x_i^2 - x_i x_j)
= \frac{1}{d} \sum_{(i,j) \in E} (x_i^2 + x_j^2 - 2x_i x_j)
= \frac{1}{d} \sum_{(i,j) \in E} (x_i - x_j)^2
\]

Therefore, the Laplacian matrix is positive semidefinite.

Since the rows and columns of L sum to zero (verify that),

\[
\lambda_1 = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^\top L u}{u^\top u} = 0
\]

where the minimum is attained by $u = (1, \ldots, 1)$. Hence, $u_1 = \frac{1}{\sqrt{n}} (1, \ldots, 1)$ is the eigenvector of λ_1, while the remaining eigenvalues of L are all nonnegative because L is positive semidefinite. Note also that any other eigenvector u_i of L with $i > 1$ is such that $u_i^\top u_1 = 0$. Therefore, $u_1, \cdots + u_i, n = 0$ for all $i = 2, \ldots, n$.

This helps us characterize λ_2,

\[
\lambda_2 = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^\top L u}{u^\top u} = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{\sum_{(i,j) \in E} (u_i - u_j)^2}{d \sum_{i=1}^n u_i^2}
\]

If G has two connected components X and Y, then we can set $u_i = |X|^{-1}$ for all $i \in X$ and $u_j = -|Y|^{-1}$ for all $j \in Y$. This ensures that $u_1 + \cdots + u_n = 0$ and the eigenvalue of this eigenvector u is $\lambda_2 = 0$. More generally, it can be proven that $\lambda_k = 0$ if and only if G has at least k connected components.

We now look at the largest eigenvalue,

\[
\lambda_n = \max_{u \in \mathbb{R}^n \setminus \{0\}} \frac{u^\top L u}{u^\top u} = \max_{u \in \mathbb{R}^n \setminus \{0\}} \frac{d \sum_{(i,j) \in E} (u_i - u_j)^2}{\sum_{i=1}^n u_i^2} = \max_{u \in \mathbb{R}^n \setminus \{0\}} \frac{2d \sum_{i=1}^n u_i^2 - \sum_{(i,j) \in E} (u_i + u_j)^2}{d \sum_{i=1}^n u_i^2}
= 2 - \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{\sum_{(i,j) \in E} (u_i + u_j)^2}{d \sum_{i=1}^n u_i^2}
\]

So $\lambda_n \leq 2$ and $\lambda_n = 2$ if G has at least a bipartite component (X,Y). Indeed, we can set $u_i = 1$ for all $i \in X$, $u_j = -1$ for all $j \in Y$, and $u_k = 0$ for all remaining k.

2
Cheeger’s inequalities. This important inequality connects the second eigenvalue with the conductance, revealing the importance of \(\lambda_2\) in clustering,

\[
\frac{\lambda_2}{2} \leq \phi(G) \leq \sqrt{2\lambda_2}.
\]

We begin by proving the first inequality.

Lemma 1 For any connected and \(d\)-regular graph \(G\), \(\lambda_2 \leq 2\phi(G)\).

Proof. We start noticing that, for any \(u \in \mathbb{R}^d\) such that \(u_1 + \cdots + u_n = 0\),

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} (u_i - u_j)^2 = 2n \sum_{i=1}^{n} u_i^2 - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j = 2n \sum_{i=1}^{n} u_i^2 - 2 \left(\sum_{i=1}^{n} u_i \right)^2 = 2n \sum_{i=1}^{n} u_i^2 \tag{2}
\]

Noting that \(u \neq 0\) and \(u^T 1 = 0\) imply \(u \neq 1\), we have

\[
\lambda_2 = \min_{u \in \mathbb{R}^n \setminus \{0\}} \frac{\sum_{(i,j) \in E} (u_i - u_j)^2}{d \sum_{i=1}^{n} u_i^2} \leq \min_{u \in \mathbb{R}^n \setminus \{0,1\}} \frac{\sum_{(i,j) \in E} (u_i - u_j)^2}{\frac{d}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} (u_i - u_j)^2}
\]

Observe that \(|E(S, \neg S)| = \sum_{(i,j) \in E} (u_i - u_j)^2\), where \(u \in \{0,1\}^n\) is the incidence vector of the set \(S\), that is \(u_i = \mathbb{I}\{i \in S\}\). Also, using \(u_i = u_i^2\) and an argument similar to the one used in (2),

\[
|S| \neg S = \left(\sum_{i=1}^{n} u_i^2 \right) \left(n - \sum_{j=1}^{n} u_j^2 \right) = n \sum_{i=1}^{n} u_i^2 - \sum_{i=1}^{n} \sum_{j=1}^{n} u_i u_j = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (u_i - u_j)^2
\]

Therefore,

\[
\sigma(G) = \min_{S \subseteq V : S \neq \emptyset} \frac{|E(S, \neg S)|}{d |S| \neg S} = \min_{u \in \{0,1\}^n \setminus \{0,1\}} \frac{\sum_{(i,j) \in E} (u_i - u_j)^2}{\frac{d}{2n} \sum_{i=1}^{n} \sum_{j=1}^{n} (u_i - u_j)^2}
\]

which implies \(\lambda_2 \leq \sigma(G)\). Since \(\sigma(G) \leq 2\phi(G)\), the proof is concluded.

The proof of the second inequality of Cheeger is based on the analysis of Fiedler’s algorithm, the simplest algorithm for spectral clustering. The algorithm works well when is run using the eigenvector of \(\lambda_2\) as input \(x\).

Algorithm 1 (Fiedler)

Input: Graph \(G = (V, E)\), vector \(x \in \mathbb{R}^n \setminus \{0\}\).
1. Sort \(V\) according to the values \(x_v\) and let \(v_1, \ldots, v_n\) be the sorted order
2. Find \(k \in \{1, \ldots, n-1\}\) minimizing \(\phi(\{v_1, \ldots, v_k\})\)

Output: \(k\)

Fiedler’s algorithm can be implemented in time \(O(|E| + |V| \ln |V|)\), because it takes time \(O(|V| \ln |V|)\) to sort the vertices, and the cut of minimal expansion that respects the sorted order can be found in time \(O(E)\). Thus the total running time is of the order of \(d(1) + \cdots + d(n) = O(|E|)\).
We now move on to the analysis of the algorithm, which gives us the second inequality of Cheeger as an immediate consequence. Let
\[R_L(x) = \sum_{(i,j) \in E} (x_i - x_j)^2 \]
be the Rayleigh quotient for \(x \in \mathbb{R}^n \), and recall that
\[\lambda_2 = \min_{x \in \mathbb{R}^n \setminus \{0\}, x \perp 1} R_L(x) \]
because \(1 \) is the (unnormalized) eigenvector of \(\lambda_1 \). We prove the following result, which implies \(\phi(G) \leq \sqrt{2\lambda_2} \).

Theorem 2 Let \(x \in \mathbb{R}^n \setminus \{0\} \) be such that \(x^\top 1 = 0 \), and let \(S_F \subset V \) be the cut found by Fiedler’s algorithm with input \(x \). Then \(\phi(S_F) \leq \sqrt{2R_L(x)} \).

Indeed, when the input \(x \) is the eigenvector of \(\lambda_2 \), using (1) we get that
\[\phi(G) = \min_{S \subseteq V} \phi(S) \leq \phi(S_F) \leq \sqrt{2\lambda_2} \]

In order to prove Theorem 2, we need to prove two auxiliary lemmas first.

Lemma 3 Let \(x \in \mathbb{R}^n \setminus \{0\} \) be such that \(x^\top 1 = 0 \). Then there exists a nonnegative vector \(y \) such that \(R_L(y) \leq R_L(x) \). Furthermore, for every \(0 < t \leq \max_{v \in V} y_v \), the cut
\[\left(\{ v \in V : y_v \geq t \}, \{ v \in V : y_v < t \} \right) \]
is one of the cuts considered in line 2 of Fiedler’s algorithm on input \(x \).

Proof. Let \(m \) be the median value of the entries of \(x \). Let \(x^+, x^- \) have components \(x^+_v = [x_v - m]_+ \) and \(x^-_v = [m - x_v]_+ \), where \([z]_+ = zI\{z > 0\} \). We set
\[y = \arg\min_{z \in \{x^+, x^-\}} R_L(z) \]
Note that \(x^+, x^- \) are both nonnegative. Now, for every \(t > 0 \),
\[\{ v \in V : x^+_v \geq t \} = \{ v \in V : [x_v - m]_+ \geq t \} = \{ v \in V : x_v \geq m + t \} \]
is one of the cuts considered by Fiedler’s algorithm on input \(x \). Similarly, for every \(t > 0 \),
\[\{ v \in V : x^-_v \geq t \} = \{ v \in V : [m - x_v]_+ \geq t \} = \{ v \in V : x_v \leq m - t \} \]
is also one of the cuts considered by Fiedler’s algorithm on input \(x \). It remains to show that \(R_L(y) \leq R_L(x) \).

Let \(x' = x - m \mathbf{1} = x^+ - x^- \) and observe that, for every constant \(c \), \(R_L(x + c \mathbf{1}) \leq R_L(x) \). Indeed, the numerator of \(R_L(x + c \mathbf{1}) \) and the numerator of \(R_L(x) \) are the same. Moreover, the denominator
of $R_L(x + c 1)$ is $\|x + c 1\|^2 = \|x\|^2 + \|c 1\|^2 \geq \|x\|^2$. Therefore $R_L(x') \leq R_L(x)$ and we are left to show that $R_L(y) \leq R_L(x')$. To this end we write

$$R_L(y) = \min \{ R_L(x^+), R_L(x^-) \}$$

$$\leq \frac{\|x^+\|^2 R_L(x^+) + \|x^-\|^2 R_L(x^-)}{\|x^+\|^2 + \|x^-\|^2} \quad \text{(using min\{a, b\} \leq \alpha a + (1 - \alpha)b)}$$

$$= \sum_{(i,j) \in E} (x_i^+ - x_j^+)^2 + \sum_{(i,j) \in E} (x_i^- - x_j^-)^2$$

$$\leq \frac{\sum_{(i,j) \in E} \left((x_i^+ - x_j^+) - (x_i^- - x_j^-) \right)^2}{\|x^+\|^2 + \|x^-\|^2} \quad \text{(this is shown below)}$$

$$= \frac{\sum_{(i,j) \in E} (x_i' - x_j')^2}{\|x'|^2} \quad \text{(using $x' = x^+ + x^-$ and $x'^\top x^- = 0$)}$$

$$= R_L(x')$$

To finish the proof, we need to verify that for each $(i,j) \in E$,

$$(x_i^+ - x_j^+)^2 + (x_i^- - x_j^-)^2 \leq \left((x_i^+ - x_j^+) - (x_i^- - x_j^-) \right)^2 \quad (3)$$

If $(x_i^+ - x_j^+)(x_i^- - x_j^-) = 0$, then (3) holds with equality. This happens when $x_i^+ = x_j^+ = 0$ or $x_i^- = x_j^- = 0$. Equivalently, when $x_i', x_j' \geq 0$ or $x_i', x_j' \leq 0$.

Now assume $(x_i^+ - x_j^+)(x_i^- - x_j^-) \neq 0$ and, without loss of generality, assume that $x_i' < 0 < x_j'$. Then $x_i^+ = 0$ and $x_j^- = 0$, so (3) becomes $(x_j^+)^2 + (x_i^-)^2 \leq (x_j^+ + x_i^-)^2$, which is clearly true. This concludes the proof. \square

The following observation is used in the proof of the next lemma.

Fact 4 For all random variables X, Y such that $Y > 0$ and $E[X], E[Y] < \infty$,

$$\mathbb{P} \left(\frac{X}{Y} \leq \frac{E[X]}{E[Y]} \right) > 0$$

Proof. Let $r = E[X]/E[Y]$. Because of linearity of expectation, $E[X - rY] = 0$. Since the expected value is zero, the random variable $X - rY$ must be nonpositive with probability bigger than zero, $\mathbb{P}(X - rY \leq 0) > 0$. Dividing both sides of $X - rY \leq 0$ by $Y > 0$, we get the desired result. \square

We are now ready to prove the second auxiliary lemma.

Lemma 5 For all nonnegative vectors $y \in \mathbb{R}^n$ there exists $0 < t < \max_v y_v$ such that

$$\expn\left(\{ v \in V : y_v \geq t \} \right) \leq \sqrt{2R_L(y)}$$

Proof. Since rescaling does not affect the Rayleigh quotient, we may assume $\max_v y_v = 1$. The proof uses the probabilistic method. Let $t \in [0, 1]$ be a random variable such that $\mathbb{P}(t \leq \sqrt{a}) = a$, where $R_L(y) = a$. Theorem 3 guarantees that

$$\mathbb{P}(X - rY \leq 0) > 0$$

Thus

$$\expn\left(\{ v \in V : y_v \geq t \} \right) \leq \sqrt{2R_L(y)}$$

Therefore $\mathbb{P}(t \leq \sqrt{a}) = a$, which concludes the proof. \square
which means that \(t^2 \) is uniformly distributed in \([0, 1]\), and define \(S_t = \{ v \in V : y_v \geq t \} \). Note that \(|S_t| > 0\) for all \(t \in [0, 1] \). Therefore, we can write

\[
\text{xpn}(\{ v \in V : y_v \geq t \}) = \frac{|E(S_t, -S_t)|}{d|S_t|} \quad \text{(by definition of xpn and } S_t) \leq \frac{\mathbb{E}[|E(S_t, -S_t)|]}{d \mathbb{E}[|S_t|]} \quad \text{(with probability } > 0, \text{ by Fact 4)}
\]

This implies that there exists some \(t \in [0, 1] \) such that the above holds. To conclude the proof, we show that

\[
\frac{\mathbb{E}[|E(S_t, -S_t)|]}{d \mathbb{E}[|S_t|]} \leq \sqrt{2R_L(y)}
\]

We start to bound the denominator. Using that \(t \) is uniformly distributed in \([0, 1]\),

\[
\mathbb{E}[|S_t|] = \sum_{i=1}^{n} \mathbb{P}(i \in S_t) = \sum_{i=1}^{n} \mathbb{P}(t \leq y_i) = \sum_{i=1}^{n} y_i^2 \quad \text{(4)}
\]

Now pick any \((i, j) \in E\) and assume \(y_j \leq y_i\). Then

\[
\mathbb{P}(i \in S_t, j \in -S_t) = \mathbb{P}(y_j < t \leq y_i) = \left(\mathbb{P}(t \leq y_i) - \mathbb{P}(t \leq y_j) \right) = y_i^2 - y_j^2
\]

Therefore,

\[
\mathbb{E}[|E(S_t, -S_t)|] = \sum_{(i,j) \in E} \left((y_i^2 - y_j^2) \mathbb{I}\{y_j \leq y_i\} + (y_j^2 - y_i^2) \mathbb{I}\{y_i \leq y_j\} \right)
\]

\[
= \sum_{(i,j) \in E} |y_i^2 - y_j^2|
\]

\[
= \sum_{(i,j) \in E} |y_i - y_j|(y_i + y_j)
\]

\[
\leq \sqrt{\sum_{(i,j) \in E} (y_i - y_j)^2} \sqrt{\sum_{(i,j) \in E} (y_i + y_j)^2}
\]

where we applied the Cauchy-Schwartz inequality \(u^\top v \leq \|u\| \|v\| \) in the last step. Using now the elementary inequality \((a + b)^2 \leq 2(a^2 + b^2)\) we may write

\[
\sum_{(i,j) \in E} (y_i + y_j)^2 \leq 2 \sum_{(i,j) \in E} (y_i^2 + y_j^2) = 2d \sum_{i=1}^{n} y_i^2
\]

Combining the above with (4) we obtain

\[
\frac{\mathbb{E}[|E(S_t, -S_t)|]}{d \mathbb{E}[|S_t|]} \leq \sqrt{\frac{\sum_{(i,j) \in E} (y_i - y_j)^2}{d \sum_{i=1}^{n} y_i^2}} = \sqrt{\frac{2 \sum_{(i,j) \in E} (y_i - y_j)^2}{d \sum_{i=1}^{n} y_i^2}}
\]
concluding the proof. □

We can now prove Theorem 2.

Proof of Theorem 2. Let \(x \in \mathbb{R}^n \) be such that \(x^\top 1 = 0 \) and let \((S_F, -S_F)\) be the cut found by Fiedler’s algorithm on input \(x \). Lemma 3 implies that then there exists a nonnegative vector \(y \) such that \(R_L(y) \leq R_L(x) \). Moreover, the same lemma also ensures there exists a threshold \(0 < t \leq \max_{v \in V} y_v \) such that the cut \((S_t, -S_t)\), for \(S_t = \{ v \in V : y_v \geq t \} \), is one of the cuts considered by Fiedler’s algorithm on input \(x \), which implies \(\phi(S_F) \leq \phi(S_t) \). Note also that \(S_t \) has at most \(\frac{n}{2} \) vertices (because \(y \) has at most \(\frac{n}{2} \) nonzero components, as we defined it using the median). Therefore, \(\phi(S_t) = \text{xpn}(S_t) \). We can thus write

\[
\phi(S_F) \leq \phi(S_t) = \text{xpn}(S_t) \leq \sqrt{2R_L(y)} \leq \sqrt{2R_L(x)}
\]

concluding the proof. □

Nonregular graphs. What is the correct generalization of the Laplacian matrix \(I - \frac{1}{d}A \) when \(G \) is not \(d \)-regular? As we want to preserve the spectral properties, we look at the Rayleigh quotient for the \(d \)-regular case:

\[
\frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i=1}^n d(i)x_i^2} = \frac{\sum_{(i,j) \in E} (x_i - x_j)^2}{\sum_{i=1}^n (\sqrt{d(i)}x_i)(\sqrt{d(i)}x_i)} = \frac{x^\top (D - A)x}{(D^{1/2}x)^\top (D^{1/2}x)}
\]

where \(D^{1/2} = \text{diag}(\sqrt{d(1)}, \ldots, \sqrt{d(n)}) \) and \(d(i) \) is the degree of \(i \). If we now set \(u = D^{1/2}x \), the above becomes

\[
\frac{(D^{-1/2}u)^\top (D - A)(D^{-1/2}u)}{u^\top u} = \frac{u^\top D^{-1/2}(D - A)D^{-1/2}u}{u^\top u} = \frac{u^\top (I - D^{-1/2}AD^{-1/2})u}{u^\top u}
\]

The matrix \(L_{\text{norm}} = I - D^{-1/2}AD^{-1/2} \) is known as the normalized Laplacian. Since the mapping \(x \to D^{1/2}x \) is bijective (because \(D^{1/2} \) is full rank), for any sublinear space \(S \subseteq \mathbb{R}^d \),

\[
\min_{x \in S \setminus \{0\}} \frac{x^\top (D - A)x}{(D^{1/2}x)^\top (D^{1/2}x)} = \min_{u \in S \setminus \{0\}} \frac{u^\top L_{\text{norm}}u}{u^\top u}
\]

which implies that all the spectral properties which we proved for \(d \)-regular graphs, including Cheeger’s inequalities, continue to hold for the normalized Laplacian of arbitrary graphs.

Acknowledgements. Thanks to Alberto Boggio and Alessia Galdeman for flagging mistakes and typos in earlier versions of this handout.