Data inference is the study of methods that use data from the past for making predictions about the future. Machine learning is a powerful tool that can be used to solve a wide range of data inference problems including the ones listed below.

- Clustering: grouping data points according to their similarity (e.g., clustering customers according to their consumer profiles)
- Prediction: assigning semantic labels to data points (e.g., classifying documents based on their topics)
- Control: performing actions in an environment in order to maximize a notion of utility (e.g., robot navigation)

Algorithms that solve a learning tasks based on semantically annotated previously observed data (e.g., documents annotated with their topic or images annotated with the objects they contain) are said to operate in a supervised learning mode. In contrast, algorithms that use data without any semantic annotation are said to operate in an unsupervised learning mode. In this course we focus on the supervised learning of predictors. We study the design of machine learning systems whose goal is to learn functions that map data points \(x \) to their labels \(y \). Once learned, these functions can be used to categorize documents or images, predict which advertisement is more likely to be clicked on by a website visitor, predict the future price of a stock based on the current market data, diagnose a disease based on a patient’s medical record, and so on.

Label sets. We use \(\mathcal{Y} \) to denote the set of all possible labels for a data point of a given learning problem. Note that labels can be of two different types: symbolic labels, like the topics of a document, and numerical labels, like the price of a stock or the demand for a product. Symbolic labels define classification problems, where label sets \(\mathcal{Y} \) are typically finite and small (such as \(\mathcal{Y} = \{ \text{sport, politics, business} \} \) for document topics). Numerical labels define regression problems, where label sets \(\mathcal{Y} \subseteq \mathbb{R} \) are typically infinite.

As we can always map symbols to numbers, we need to specify more precisely how regression differs from classification. In regression, prediction mistakes are typically a function of the difference \(|y - \hat{y}| \), where \(\hat{y} \) is the prediction for \(y \). In classification, mistakes are typically binary: either \(\hat{y} = y \) (no mistake) or \(\hat{y} \neq y \) (mistake). This because the label set in a classification task is an abstract set of symbols (irrespective to whether we encode the symbols using numbers) without a natural notion of distance between them. When \(|\mathcal{Y}| = 2 \), for example \(\mathcal{Y} = \{ \text{healthy, sick} \} \), we have a binary classification problem, and conventionally use the numerical encoding \(\mathcal{Y} = \{-1, 1\} \).

Loss functions. In order to measure the goodness of a prediction for a prediction task we use a nonnegative loss function \(\ell \), measuring the discrepancy \(\ell(y, \hat{y}) \) between the predicted label \(\hat{y} \) and
the correct label \(y \). We always assume that \(\ell(y, \hat{y}) = 0 \) when \(y = \hat{y} \). The simplest loss function for classification is the zero-one loss:

\[
\ell(y, \hat{y}) = \begin{cases}
0 & \text{if } y = \hat{y}, \\
1 & \text{otherwise}.
\end{cases}
\]

In certain cases, we need more complex classification losses. Consider the problem of categorizing spam email using the label set \(\mathcal{Y} = \{\text{spam}, \text{nonspam}\} \). We may penalize a false positive mistake (i.e., a nonspam email wrongly classified as spam) more than a false negative mistake (i.e., a spam email wrongly classified as nonspam). For example,

\[
\ell(y, \hat{y}) = \begin{cases}
2 & \text{if } y = \text{nonspam} \text{ and } \hat{y} = \text{spam}, \\
1 & \text{if } y = \text{spam} \text{ and } \hat{y} = \text{nonspam}, \\
0 & \text{otherwise}.
\end{cases}
\]

In regression, typical loss functions are the absolute loss \(\ell(y, \hat{y}) = |y - \hat{y}| \) and the quadratic loss \(\ell(y, \hat{y}) = (y - \hat{y})^2 \). Note that these losses are only meaningful for numerical labels. Moreover, the value of the loss grows with the distance between \(y \) and \(\hat{y} \).

In some cases, it may be convenient to choose predictions from a set \(\mathcal{Z} \) different from the label set \(\mathcal{Y} \). For example, consider the problem of assigning a probability \(\hat{y} \in (0, 1) \) to the event \(y = \text{“it will rain tomorrow”} \) (and, consequently, assigning probability \(1 - \hat{y} \) to the complementary event \(y = \text{“it will not rain tomorrow”} \)). In this case, \(\mathcal{Y} = \{\text{“rain”}, \text{“no rain”}\} \) and \(\mathcal{Z} = (0, 1) \). Denoting these two events with 1 (for rain) and 0 (for no rain), we may use a loss function for regression, so to punish more harshly predictions that depart too much from reality, we may used instead the logarithmic loss,

\[
\ell(y, \hat{y}) = \begin{cases}
\ln \frac{1}{y} & \text{if } y = 1 \text{ (rain),} \\
\ln \frac{1}{1-y} & \text{if } y = 0 \text{ (no rain).}
\end{cases}
\]

Unlike the absolute loss, the logarithmic loss may take arbitrarily high values, see Figure 1.

Figure 1: Logarithmic loss function \(\ell(1, \hat{y}) = \ln \frac{1}{y} \) (blue curve) and absolute loss function \(\ell(1, \hat{y}) = |1 - \hat{y}| \) (red line) for the case \(y = 1 \). In particular, we have \(\lim_{\hat{y}\to0^+}\ell(1, \hat{y}) = \lim_{\hat{y}\to1^-}\ell(0, \hat{y}) = \infty \).

In practice, this fact prevents the predictor from using predictions \(\hat{y} \) that are too certain, namely too close to zero or one.
Data domain. We use X to denote the set of all possible data points for a given learning problem. Each data point x is typically stored as a database record. In many interesting cases, data can be encoded as vectors of real numbers. Such a vector representation is natural whenever the data consist of a set of homogeneous quantities, such as pixels in an image or word frequencies in a document. The standard Euclidean geometry then works well because all coordinates use the same unit of measurement. In these cases we may hope that the semantic information carried by the labels be reflected in the geometrical relationships between data points (e.g., in a classification task data points with the same label are close to each other in terms of their Euclidean distance).

In other cases, a vector space representation may not be that natural. For example, the values in the fields of a medical record may use different units, such as age and height, or even range in a set of symbols, such as sex (variables that have symbolic values are called categorical). Using rescaling, and techniques like one-hot encoding for dealing with categorical quantities, it is possible to give a homogeneous vector space representation to most types of data. However, the geometrical properties of these vectors might not be well correlated to their labels.

In this course, we often assume that data can be represented as vectors of numbers, namely $X \equiv \mathbb{R}^d$. Irrespective of whether $X \equiv \mathbb{R}^d$ or $X \equiv X_1 \times \cdots \times X_d$ for some arbitrary sets X_1, \ldots, X_d, given a data point $x = (x_1, \ldots, x_d)$, we say that x_i is the value of the i-th feature or attribute.

A predictor is a function $f : X \to \mathcal{Y}$ mapping data points to labels (or $f : X \to \mathcal{Z}$ if the predictions belong to a set \mathcal{Z} different from \mathcal{Y}). Informally speaking, in a prediction problem the goal is to learn a function f that generates predictions $\hat{y} = f(x)$ such that $\ell(y, \hat{y})$ is small for most data points $x \in X$ observed in practice. In practice, the function f is represented by a certain choice of parameters in a certain model. For examples, a certain setting of the weights of a neural network.

Examples. In supervised learning, an example is a pair (x, y) where x is a data point and y is the “true” label associated with x. In some cases, there is a unique true label for x. This happens when y measures some objective property of the data point; for example, y is the closing price of a stock on a certain day. In some other cases, the label y is subjectively assigned by a human annotator; for example, the genre of a movie. Clearly, different annotators may have different opinions about a movie’s genre, implying that the same data point may occur with different “true” labels.

In order to estimate the predictive power of a predictor, which is what we are ultimately interested in, we typically use a test set. This is a set\footnote{Technically, it is a multiset because some examples may occur more than once. However, treating datasets as multisets complicates the notation. For this reason, and without much loss of generality, we will mostly view datasets as sets in the standard mathematical acception.} of examples $(x'_1, y'_1), \ldots, (x'_n, y'_n)$. Given a loss function ℓ, the test set is used to compute the test error of a predictors f,

$$\frac{1}{n} \sum_{t=1}^{n} \ell(y'_t, f(x'_t)).$$

The test error is meant to estimate the average performance of the predictor on typical real-world data.

An learning algorithm receives a training set as input and outputs a predictor. A training set is a set of examples $(x_1, y_1), \ldots, (x_m, y_m)$. Training and test set are often collected together,
through a single round of data collection and annotation. Partitioning the examples in training and test data is done afterward, typically using a random split. Our objective is to develop a theory to guide us in the design of learning algorithms that generate predictors with low test error.

Since the only input to a learning algorithm is the training set \(S \equiv \{(x_1, y_1), \ldots, (x_m, y_m)\} \), a natural approach to the design of learning algorithms is to assume that the training error

\[
\ell_S(f) = \frac{1}{m} \sum_{t=1}^{m} \ell(y_t, f(x_t))
\]

of a predictor be correlated to its test error.

Empirical risk minimization. Let \(\mathcal{F} \) be a given set of predictors and \(\ell \) a loss function. The empirical risk minimizer (ERM) is the learning algorithm that outputs some predictor in \(\mathcal{F} \) minimizing the training error

\[
\hat{f} \in \arg\min_{f \in \mathcal{F}} \ell_S(f).
\]

The \(\hat{f} \in \) notation takes into account the fact that there could be multiple \(f \in \mathcal{F} \) minimizing the training error.

Overfitting and underfitting. ERM obviously fails when no predictor in \(\mathcal{F} \) has a low test error. This suggests we should run ERM with a large \(\mathcal{F} \), so that there is a good chance that a predictor with low test error exists in \(\mathcal{F} \).

On the other hand, choosing \(\mathcal{F} \) large can also lead ERM to fail. To see this, assume \(\mathcal{Y} \equiv \{-1, 1\} \) and consider a toy problem with only five data points, \(\mathcal{X} \equiv \{x_1, \ldots, x_5\} \). Now, take some \(\mathcal{F} \) containing a classifier \(f : \{x_1, \ldots, x_5\} \to \{-1, 1\} \) for each of the \(2^5 = 32 \) possible binary labelings of the five data points, and suppose the training set contains any three points and the test set contains the two remaining ones. Now assume data labels \(y_1, \ldots, y_5 \) are all assigned using some \(f^* \in \mathcal{F} \), \(y_t = f^*(x_t) \) for \(t = 1, \ldots, 5 \). Clearly \(f^* \) has zero training error and zero test error. However, with a training set of three points, ERM always finds four classifiers in \(\mathcal{F} \) that have zero training error. Of these four classifiers with zero training error, only one (i.e., \(f^* \)) has also zero test error. But the training set does not contain enough information to help ERM select this classifier.

The problem in the previous example is that \(\mathcal{F} \) is too large with respect to the training set. Information theory tells us that we need \(\log_2 |\mathcal{F}| = 5 \) bits of information to identify \(f^* \in \mathcal{F} \). Indeed, \(f^* \) is determined the five labels \(f^*(x_1), \ldots, f^*(x_5) \). This is telling us that the training set should contain at least \(\log_2 |\mathcal{F}| \) distinct data points. Equivalently, \(|\mathcal{F}| \) should be smaller than \(2^m \), where \(m \) is the training set size.

We may give specific names to these two ways of failing for a generic learning algorithm \(A \):

- if \(A \) tends to output predictors whose training and test errors are close to each other but high, then we say that \(A \) is **underfitting**.

- if \(A \) tends to output predictors whose training error is low and whose test error is high, then we say that \(A \) is **overfitting**.
When A is ERM and the training set size m is fixed, our information-theoretic argument says that we should expect overfitting when $\log_2 |\mathcal{F}| \gg m$. Vice versa, when $|\mathcal{F}|$ is too small, we should expect underfitting as soon as the training set satisfies $m \gg \log_2 |\mathcal{F}|$.

Noisy labels. Overfitting often arises when labels are noisy. Namely, when labels y are not deterministically associated with data points x, like in our previous example where $y_t = f^*(x_t)$. Noise may occur for two (not mutually exclusive) reasons.

1. **Human in the loop**: The labels are assigned by a human annotator who decides the “true” label for each data point. In this case, different annotators may have different opinions.

2. **Lack of information**: The information contained in the data point x is not sufficient to uniquely determine the label. For example, suppose x encodes measurements such as today’s temperature, pressure, humidity, whereas $y \in \{-1, 1\}$ denotes whether tomorrow rains or not. It is quite possible that the same observed values lead to rain in some cases and to sun in other cases.

Noisy labels cause overfitting because they may mislead the algorithm with regard to what is the “true” label for a given data point.