We investigate the problem of bounding the zero-one loss risk of the 1-NN binary classifier averaged with respect to the random draw of the training set. Under some assumptions on the data distribution \mathcal{D}, we prove a bound of the form

$$
\mathbb{E}[\ell_{\mathcal{D}}(A(S_m))] \leq 2\ell_{\mathcal{D}}(f^*) + \varepsilon_m
$$

(1)

where A denotes the 1-NN algorithm, S_m the training set of size m, $\ell_{\mathcal{D}}(f^*)$ is the Bayes risk, and ε_m is a quantity that vanishes for $m \to \infty$. Note that we are able to compare $\mathbb{E}[\ell_{\mathcal{D}}(A(S_m))]$ directly to the Bayes risk, showing that 1-NN is—in some sense—a powerful learning algorithm.

Recall that in binary classification we denote the joint distribution of (X, Y) with the pair (\mathcal{D}_X, η), where \mathcal{D}_X is the marginal of \mathcal{D} on X and $\eta(x) = \mathbb{P}(Y = 1 \mid X = x)$. Fix m and let $S = \{(x_1, y_1), \ldots, (x_m, y_m)\}$ be a training set of size m. We define the map $\pi(S, \cdot) : \mathbb{R}^d \to \{1, \ldots, m\}$ by

$$
\pi(S, x) = \arg\min_{t=1, \ldots, m} \|x - x_t\|.
$$

If there is more than one point x_t achieving the minimum in the above expression, then $\pi(S, x)$ selects one of them using any deterministic tie-breaking rule; our analysis does not depend on the specific rule being used. The 1-NN classifier $h_S = A(S)$ is defined by $h_S(x) = y_{\pi(S, x)}$.

From now on, the training set S is a sample $\{(X_1, Y_1), \ldots, (X_m, Y_m)\}$ drawn i.i.d. from \mathcal{D}. The expected risk is defined by

$$
\mathbb{E}[\ell_{\mathcal{D}}(A(S))] = \mathbb{P}(Y_{\pi(S, X)} \neq Y)
$$

Where probabilities and expectations are understood with respect to the random draw of training set S and of the example (X, Y) with respect to which the risk of $A(S)$ is computed.

We now state a crucial lemma.

Lemma 1. *The expected risk of the 1-NN classifier can be written as follows*

$$
\mathbb{E}[\ell_{\mathcal{D}}(h_S)] = \mathbb{E}\left[\eta(X_{\pi(S, X)}) \left(1 - \eta(X)\right)\right] + \mathbb{E}\left[\left(1 - \eta(X_{\pi(S, X)})\right)\eta(X)\right]
$$

To proceed with the analysis, we now need some assumptions on \mathcal{D}_X and η. First, all data points X drawn from \mathcal{D}_X satisfy $\max_i |X_i| \leq 1$ with probability one. In other words, $X \in [-1, 1]^d$ with probability 1. Let $\mathcal{X} \equiv [-1, 1]^d$ the subsets of data points with this property. Second we assume that η is Lipschitz on \mathcal{X} with constant $c > 0$. We can thus write

$$
\eta(x') \leq \eta(x) + c \|x - x'\| \quad (2)
$$

$$
1 - \eta(x') \leq 1 - \eta(x) + c \|x - x'\| \quad (3)
$$

1
Using (2) and (3), for all $x, x' \in \mathcal{X}$ we have

$$\eta(x)\left(1 - \eta(x')\right) + \left(1 - \eta(x)\right)\eta(x')$$

$$\leq \eta(x)\left(1 - \eta(x)\right) + \eta(x)c\|x - x'\| + \left(1 - \eta(x)\right)\eta(x) + \left(1 - \eta(x)\right)c\|x - x'\|$$

$$= 2\eta(x)\left(1 - \eta(x)\right) + c\|x - x'\|$$

$$\leq 2\min\{\eta(x), 1 - \eta(x)\} + c\|x - x'\|$$

where the last inequality holds because $z(1 - z) \leq \min\{z, 1 - z\}$ for all $z \in [0, 1]$. Therefore

$$\mathbb{E}[\ell_D(h_S)] \leq 2 \mathbb{E}\left[\min\{\eta(X), 1 - \eta(X)\}\right] + c\mathbb{E}\left[\|X - X_{\pi(S,X)}\|\right].$$

Recalling that the Bayes risk for the zero-one loss is $\ell_D(f^*) = \mathbb{E}\left[\min\{\eta(X), 1 - \eta(X)\}\right]$ we have

$$\mathbb{E}[\ell_D(h_S)] \leq 2 \ell_D(f^*) + c\mathbb{E}\left[\|X - X_{\pi(S,X)}\|\right].$$

In order to bound the term containing the expected value of $\|X - X_{\pi(S,X)}\|$ we partition the data space \mathcal{X} in d-dimensional hypercubes with side $\varepsilon > 0$, see Figure 1 for a bidimensional example. Let C_1, \ldots, C_r the resulting hypercubes. We can now bound $\|X - X_{\pi(S,X)}\|$ using a case analysis. Assume first that X belongs to a C_i in which there is at least a training point X_t. Then $\|X - X_{\pi(S,X)}\|$ is at most the length of the diagonal of the hypercube, which is $\varepsilon \sqrt{d}$, see the left pane in Figure 1. Now assume that X belongs to a C_i in which there are no training points. Then $\|X - X_{\pi(S,X)}\|$ is only bounded by the length of the diagonal of \mathcal{X}, which is $2\sqrt{d}$, see the
right pane in Figure 1. Hence, we may write

$$
\mathbb{E} \left[\|X - X_{\pi(S,X)}\| \right] \leq \mathbb{E} \left[\varepsilon \sqrt{d} \sum_{i=1}^{r} \mathbb{I} \{ C_i \cap S \neq \emptyset \} \mathbb{I} \{ X \in C_i \} + 2 \sqrt{d} \sum_{i=1}^{r} \mathbb{I} \{ C_i \cap S = \emptyset \} \mathbb{I} \{ X \in C_i \} \right]
$$

$$
= \varepsilon \sqrt{d} \mathbb{E} \left[\sum_{i=1}^{r} \mathbb{I} \{ C_i \cap S \neq \emptyset \} \mathbb{I} \{ X \in C_i \} \right] + 2 \sqrt{d} \sum_{i=1}^{r} \mathbb{E} \left[\mathbb{I} \{ C_i \cap S = \emptyset \} \mathbb{I} \{ X \in C_i \} \right]
$$

where in the last step we used linearity of the expected value. Now observe that, for all \(S \) and \(X \),

$$
\sum_{i=1}^{r} \mathbb{I} \{ C_i \cap S \neq \emptyset \} \mathbb{I} \{ X \in C_i \} \in \{0, 1\}
$$

because \(X \in C_i \) for only one \(i = 1, \ldots, d \). Therefore,

$$
\mathbb{E} \left[\sum_{i=1}^{r} \mathbb{I} \{ C_i \cap S \neq \emptyset \} \mathbb{I} \{ X \in C_i \} \right] \leq 1.
$$

To bound the remaining term, we use the independence between \(X \) and the training set \(S \),

$$
\mathbb{E} \left[\mathbb{I} \{ C_i \cap S = \emptyset \} \mathbb{I} \{ X \in C_i \} \right] = \mathbb{E} \left[\mathbb{I} \{ C_i \cap S = \emptyset \} \right] \mathbb{E} \left[\mathbb{I} \{ X \in C_i \} \right] = \mathbb{P} \left(C_i \cap S = \emptyset \right) \mathbb{P} \left(X \in C_i \right).
$$

Since \(S \) contains \(m \) data points independently drawn, for a generic data point \(X' \) we have that

$$
\mathbb{P}(C_i \cap S = \emptyset) = (1 - \mathbb{P}(X' \in C_i))^m \leq \exp(-m \mathbb{P}(X' \in C_i))
$$

where in the last step we used the inequality \((1 - p)^m \leq e^{-pm}\). Setting \(p_i = \mathbb{P}(X' \in C_i) \) we have

$$
\mathbb{E} \left[\|X - X_{\pi(S,X)}\| \right] \leq \varepsilon \sqrt{d} + \left(2 \sqrt{d} \right) \sum_{i=1}^{r} e^{-p_i} p_i
$$

$$
\leq \varepsilon \sqrt{d} + \left(2 \sqrt{d} \right) \sum_{i=1}^{r} \max_{0 \leq p \leq 1} e^{-pm} p
$$

$$
= \varepsilon \sqrt{d} + \left(2 \sqrt{d} \right) r \max_{0 \leq p \leq 1} e^{-pm} p.
$$

The concave function \(g(p) = e^{-pm}p \) is maximized for \(p = \frac{1}{m} \). Therefore,

$$
\mathbb{E} \left[\|X - X_{\pi(S,X)}\| \right] \leq \varepsilon \sqrt{d} + \left(2 \sqrt{d} \right) r \frac{1}{m} \left(e + \frac{2}{em} \left(\frac{2}{\varepsilon} \right)^d \right)
$$

where we used the fact that the number \(r \) of hypercubes is equal to \(\left(\frac{2}{\varepsilon} \right)^d \). Putting everything together we find that

$$
\mathbb{E} [\ell_D(h_S)] \leq 2 \ell_D(f^*) + c \sqrt{d} \left(e + \frac{2}{em} \left(\frac{2}{\varepsilon} \right)^d \right)
$$

Since this holds for all \(0 < \varepsilon < 1 \), we can set \(\varepsilon = 2 m^{-1/(d+1)} \). This gives

$$
\varepsilon + \frac{2}{em} \left(\frac{2}{\varepsilon} \right)^d = 2 m^{-1/(d+1)} + \frac{2^{d+1} - d m^{d/(d+1)}}{em} = 2 m^{-1/(d+1)} \left(1 + \frac{1}{e} \right) \leq 4m^{-1/(d+1)}.
$$

(4)
Substituting this bound in (4), we finally obtain
\[\mathbb{E}[\ell_D(h_S)] \leq 2 \ell_D(f^*) + c 4m^{-1/(d+1)} \sqrt{d}. \]

Note that for \(m \to \infty \), \(\ell_D(f^*) \leq \mathbb{E}[\ell_D(h_S)] \leq 2 \ell_D(f^*) \). Namely, the asymptotic risk of 1-NN lies between the Bayes risk and twice the Bayes risk.