In certain application domains, such as weather prediction, one typically prefers to output a probability (e.g., the chance of rain) instead of a binary prediction (e.g., it will rain). This task corresponds to the problem of learning the function \(\eta(x) = \mathbb{P}(Y = 1 \mid X = x) \) in a binary classification problem. A popular approach to do that is known as \textbf{logistic regression}: we train a predictor \(g : \mathcal{X} \to \mathbb{R} \) and then use \(\sigma(g(x)) \) to predict \(\eta(x) \). The function \(\sigma : \mathbb{R} \to \mathbb{R} \), called logistic, is defined by

\[
\sigma(z) = \frac{1}{1 + e^{-z}} \in (0, 1)
\]

Because we estimate a probability, an appropriate loss function is the logarithmic loss (here we use logarithms in base 2 for convenience),

\[
\ell(y, \hat{y}) = \mathbb{I}\{y = +1\} \log_2 \frac{1}{\hat{y}} + \mathbb{I}\{y = -1\} \log_2 \frac{1}{1 - \hat{y}}
\]

Noting that \(1 - \sigma(z) = \sigma(-z) \), we can write the identity

\[
\mathbb{I}\{y = +1\} \log_2 \frac{1}{\hat{y}} + \mathbb{I}\{y = -1\} \log_2 \frac{1}{1 - \hat{y}} = \log_2 \left(1 + e^{-yg(x)} \right)
\]

where \(\hat{y} = \sigma(g(x)) \). The right-hand side of the above identity is a function known as \textbf{logistic loss}, and is typically defined using \(\hat{y} = g(x) \) as follows,

\[
\ell(y, \hat{y}) = \log_2 \left(1 + e^{-y\hat{y}} \right)
\]

We now describe the important case of logistic regression when \(g(x) \) is a linear model \(w^\top x \). Given a training set \(S = \{(x_1, y_1), \ldots, (x_m, y_m)\} \), let \(\ell_t(w) = \log_2 \left(1 + e^{-y_t w^\top x_t} \right) \), we show how to compute \(\nabla \ell_t(w) \). Let \(s_t = w^\top x_t \). First, observe that

\[
\frac{d}{ds_t} \log_2 \left(1 + e^{-y s_t} \right) = \frac{1}{\ln 2} \frac{-y_t e^{-y_t s_t}}{1 + e^{-y_t s_t}} = \frac{1}{\ln 2} \frac{-y_t}{1 + e^{y_t s_t}} = \frac{-y_t \sigma(-y_t s_t)}{\ln 2}
\]

Therefore,

\[
\nabla \ell_t(w) = \left(\frac{d}{ds_t} \log_2 \left(1 + e^{-y s_t} \right) \bigg|_{s_t = w^\top x_t} \right) x_t = \frac{-\sigma(-y_t w^\top x_t)}{\ln 2} y_t x_t.
\]

The gradient descent update can then be written as

\[
w_{t+1} = w_t + \eta_t \sigma(-y_t w^\top x_t) y_t x_t
\]

where we hid the \(\ln 2 \) factor in the learning rate \(\eta_t \).
To avoid overfitting, logistic regression is often used with a regularization term that enforces stability,
\[
\ell_t(w) = \log_2 \left(1 + e^{-y_t w^\top x_t}\right) + \frac{\lambda}{2} \|w\|^2.
\]

If we run stochastic gradient descent using regularized logistic regression we get an algorithm similar to Pegasos for regularized hinge loss.

Surrogate losses \(\ell : \{-1, 1\} \times \mathbb{R} \rightarrow \mathbb{R} \) are convex upper bounds on the zero-one loss function for binary classification. We already encountered three of them:

- Hinge loss \(\ell(y, \tilde{y}) = [1 - y \tilde{y}]_+ \)
- Boosting loss \(\ell(y, \tilde{y}) = e^{-y \tilde{y}} \)
- Logistic loss \(\ell(y, \tilde{y}) = \log_2 \left(1 + e^{-y \tilde{y}}\right) \)

where \(y \in \{-1, 1\} \) and \(\tilde{y} \in \mathbb{R} \).

As many surrogate losses exist, we may wonder whether some of them should be preferred over the others. We now define an important criterion, called consistency, that a surrogate loss may satisfy with respect to the function \(\eta(x) = \mathbb{P}(Y = 1 \mid X = x) \) which defines the Bayes optimal predictor \(f^* \).

A surrogate loss function \(\ell \) is **consistent** if, for all \(x \in \mathcal{X} \),

\[
\text{sgn}(g^*(x)) = f^* \quad \text{for} \quad g^*(x) = \arg\min_{\tilde{y} \in \mathbb{R}} \mathbb{E}[\ell(Y, \tilde{y}) \mid X = x]
\]

In other words, the sign of the Bayes optimal predictor for the surrogate loss must be the Bayes optimal classifier for the zero-one loss.

We now verify the consistency of the logistic loss. By taking derivatives, it is easy to check that

\[
g^*(x) = \arg\min_{\tilde{y} \in \mathbb{R}} \left(\eta(x) \log_2 \left(1 + e^{-\tilde{y}}\right) + (1 - \eta(x)) \log_2 \left(1 + e^{\tilde{y}}\right) \right) = \ln \frac{\eta(x)}{1 - \eta(x)}
\]

which implies

\[
\text{sgn}(g^*(x)) = \text{sgn} \left(\ln \frac{\eta(x)}{1 - \eta(x)} \right) = \text{sgn}(\eta(x) - \frac{1}{2}) = f^*(x)
\]

The Bayes optimal prediction \(g^*(x) = \ln \frac{\eta(x)}{1 - \eta(x)} \) for the logistic loss is known as log-odds ratio. If we compute the conditional Bayes risk of \(g^* \) with respect to the logistic loss we get

\[
\mathbb{E} \left[\log_2 \left(1 + e^{-Y g^*(x)}\right) \mid X = x \right] = -\eta(x) \log_2 \eta(x) - (1 - \eta(x)) \log_2 (1 - \eta(x))
\]

The quantity on the right-hand side is the entropy \(H(Y \mid X = x) \) of \(Y \) for \(X = x \). This corresponds to the expected number of bits that we receive by observing \(Y \) when \(X \) is already known. From the conditional Bayes risk, we can easily obtain the Bayes risk,

\[
\ell_D(g^*) = \mathbb{E} \left[\log_2 \left(1 + e^{-Y g^*(x)}\right) \right] = H(Y \mid X)
\]

The quantity on the right-hand side is now the conditional entropy \(H(Y \mid X) \) of the label \(Y \) given \(X \), which corresponds the Bayes risk for the logistic loss.
Next, we verify the consistency of the hinge loss. We have

\[g^*(x) = \arg\min_{\widehat{y} \in \mathbb{R}} \left(\eta(x) \left[1 - \widehat{y}\right]_+ + (1 - \eta(x)) \left[1 + \widehat{y}\right]_+ \right) \]

\[= \arg\min_{\widehat{y} \in [-1, +1]} \left(\eta(x) \left[1 - \widehat{y}\right]_+ + (1 - \eta(x)) \left[1 + \widehat{y}\right]_+ \right) \]

\[= \arg\min_{\widehat{y} \in [-1, +1]} \left(1 + (1 - 2\eta(x))\widehat{y} \right) \]

\[= \begin{cases}
-1 & \text{if } \eta(x) \leq 1/2, \\
+1 & \text{otherwise}
\end{cases} \]

\[= f^*(x) \]

In the second inequality, we could replace \(\widehat{y} \in \mathbb{R} \) with \(\widehat{y} \in [-1, +1] \) because both functions \([1 - \widehat{y}]_+\) and \([1 + \widehat{y}]_+\) increase or remain constant outside of the interval \([-1, +1]\).

More generally, the following result holds.

Theorem 1 (Sufficient condition for consistency of a surrogate loss). If a surrogate loss \(\ell : \{-1, 1\} \times \mathbb{R} \to \mathbb{R} \) is such that for all \(y \in \{-1, 1\} \) the derivative \(\ell'(y, 0) \) exists and satisfies \(\ell'(y, 0) < 0 \), then \(\ell \) is consistent.

Besides the hinge loss and the logistic loss, also the boosting loss, the square loss \(\ell(y, b_y) = (1 - y b_y)^2 \) and the quadratic hinge loss \(\ell(y, \widehat{y}) = \left([1 - y \widehat{y}]_+\right)^2 \) are all consistent.