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Abstract. In this paper we show that several known algorithms for sequential prediction problems (including
Weighted Majority and the quasi-additive family of Grove, Littlestone, and Schuurmans), for playing iterated
games (including Freund and Schapire’s Hedge and MW, as well as the �-strategies of Hart and Mas-Colell), and
for boosting (including AdaBoost) are special cases of a general decision strategy based on the notion of potential.
By analyzing this strategy we derive known performance bounds, as well as new bounds, as simple corollaries of
a single general theorem. Besides offering a new and unified view on a large family of algorithms, we establish a
connection between potential-based analysis in learning and their counterparts independently developed in game
theory. By exploiting this connection, we show that certain learning problems are instances of more general game-
theoretic problems. In particular, we describe a notion of generalized regret and show its applications in learning
theory.
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1. Introduction

We begin by describing an abstract sequential decision problem and a general strategy
to solve it. As we will see in detail in the subsequent sections, several previously known
algorithms for more specific decision problems turn out to be special cases of this strategy.

The problem is parametrized by a decision space X , by an outcome space Y , and by
a convex and twice differentiable potential function � : R

N → R
+. At each step t =

1, 2, . . . , the current state is represented by a point Rt−1 ∈ R
N , where R0 = 0. The

decision maker observes a vector-valued drift function r t : X × Y → R
N and selects an

element ŷt from the decision space X . In return, an outcome yt ∈ Y is received, and the new
state of the problem is the “drifted point” Rt = Rt−1 + r t (ŷt , yt ). The goal of the decision
maker is to minimize the potential �(Rt ) for a given t (which might be known or unknown
to the decision maker).

∗An extended abstract appeared in the Proceedings of the 14th Annual Conference on Computational Learning
Theory and the 5th European Conference on Computational Learning Theory, Springer, 2001.
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One of the main goals of this paper is to point out that many seemingly unrelated prob-
lems fit in the framework of the abstract sequential decision problem described above, and
that their analysis may be summarized in some general simple theorems. These problems
include on-line prediction problems in the “experts” model, perceptron-like classification
algorithms, methods of learning in repeated game playing, etc. We usually think of r t as the
vector of “regrets” the decision maker suffers at time t and Rt is the corresponding “cumu-
lative regret” vector. The decision maker’s goal is to keep, in some sense, the cumulative
regret vector close to the origin. In the applications described below, the decision maker is
free to choose the potential function �. To fill the abstract problem described above with
meaning, next we describe a propotype example which is detailed in Section 3.

Example. Consider an on-line prediction problem in the experts’ framework of Cesa-
Bianchi et al. (1997). Here, the decision maker is a predictor whose goal is to forecast
a hidden sequence y1, y2, . . . of elements in the outcome space Y . At each time t , the
predictor computes its guess ŷt ∈ X for the next outcome yt . This guess is based on the
advice f1,t , . . . , fN ,t ∈ X of N reference predictors, or experts from a fixed pool. The
guesses of the predictor and the experts are then individually scored using a loss function
� : X × Y → R. The predictor’s goal is to keep as small as possible the cumulative regret
with respect to each expert. This quantity is defined, for expert i , by the sum

t∑
s=1

(�(ŷs, ys) − �( fi,s, ys)).

This can be easily modeled within our abstract decision problem by associating a coordinate
to each expert and by defining the components ri,t of the drift function r t by ri,t (ŷt , yt ) =
�(ŷt , yt ) − �( fi,t , yt ) for i = 1, . . . , N .

The role of the potential function � in the prediction-with-experts framework is to provide
a generalized way to measure the size (or distance from the origin) of the regret Rt . This
distance information can then be used by the predictor to control the regret. Below, we
introduce a class of predictors that use the potential information to keep the drift r t in the
same halfspace where the negative gradient of �(Rt ) resides. To guarantee the existence
of such predictors we need to constrain our abstract decision problem by making two
assumptions which will be naturally satisfied by all of our applications. The notation u · v
stands for the inner product of two vectors defined by u · v = u1v1 + · · · + uN vN .

1. Generalized Blackwell’s condition. At each time t , a decision ŷt ∈ X exists such that

sup
yt ∈Y

∇�(Rt−1) · r t (ŷt , yt ) ≤ 0, (1)

2. Additive potential. The potential � can be written as �(u) = ∑N
i=1 φ(ui ) for all u =

(u1, . . . , uN ) ∈ R
N , where φ : R → R

+ is a nonnegative function of one variable.
Typically, φ will be monotonically increasing and convex on R.
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Remark. Strategies satisfying condition (1) tend to keep the point Rt as close as possible
to the minimum of the potential by forcing the drift vector to point away from the gradient
of the current potential. This gradient descent approach to sequential decision problems
is not new. A prominent example of a decision strategy of this type is the one used by
Blackwell to prove his celebrated approachability theorem (Blackwell, 1956), generalizing
to vector-valued payoffs von Neumann’s minimax theorem. The application of Blackwell’s
strategy to sequential decision problems, and its generalization to arbitrary potentials, is
due to a series of papers by Hart and Mas-Colell (2000, 2001), where condition (1) was
first introduced (though in a somewhat more restricted context). Condition (1) has been
independently introduced by Grove, Littlestone, and Schuurmans (2001), who used it to
define and analyze a new family of algorithms for solving on-line binary classification
problems. This family includes, as special cases, the Perceptron (Rosenblatt, 1962) and
the zero-threshold Winnow algorithm (Littlestone, 1989). Finally, our abstract decision
problem bears some similarities with Schapire’s drifting game (Schapire, 2001).

The rest of the paper is organized as follows. In Section 2 a general result is derived for
the performance of sequential decision strategies satisfying condition (1), and the special
cases of the most important types of potential functions (i.e., exponential and polynomial)
are discussed in detail. In Section 3 we return to the problem of prediction with expert
advice, and recover several well-known results by the main result of Section 2. The purpose
of Section 4 is to show that many variants of the perceptron algorithm for on-line linear
classification (including winnow and the p-norm perceptron) are again special cases of
the general problem and that it is a simple matter to re-derive several well-known mistake
bounds using the general framework. In Section 5 boosting is revisited with a similar
purpose. Section 6 is dedicated to problems of learning in repeated game playing. Here we
discuss a family of Hannan consistent methods, and fit an algorithm of Freund and Schapire
in the general framework. Finally, we discuss a very general notion of regret, and derive
performance bounds for a generalization of a method of adaptive game playing due to Hart
and Mas-Colell.

2. General bounds

In this section we describe a general upper bound on the potential of the location reached
by the drifting point when the decision maker uses a strategy satisfying condition (1).
This result is inspired by, and partially builds on, Hart and Mas-Colell’s analysis of their
�-strategies (Hart & Mas-Colell, 2001) for playing iterated games and the analysis of
quasi-additive algorithms for binary classification by Grove, Littlestone, and Schuurmans
(1997).

Theorem 1. Let � be a twice differentiable additive potential function and let r1, r2, . . . ∈
R

N be such that

∇�(Rt−1) · r t ≤ 0
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for all t ≥ 1, where Rt = r1 + · · · + r t . Let f : R
+ → R

+ be an increasing, concave, and
twice differentiable auxiliary function such that, for all t = 1, 2, . . .,

sup
u∈RN

f ′ (�(u))
N∑

i=1

φ′′(ui )r
2
i,t ≤ C(r t )

for some nonegative function C : R
N → R

+. Then, for all t = 1, 2, . . .,

f (�(Rt )) ≤ f (�(0)) + 1

2

t∑
s=1

C(r s).

Remark. At a first sight it not obvious how to interpret this result. Yet, as we will see
below, it may be used to derive useful bounds very easily in a large variety of special
cases. At this point we simply point out that in most interesting applications, one finds a
bounded function C satisfying the assumption. In such cases one obtains, for some constant
c, f (�(Rt )) ≤ f (�(0)) + ct . Now if f (�(u)) has a superlinear growth in some norm
of u (e.g., if f ◦ � is strictly convex) then this is sufficient to conclude that Rt/t → 0 as
t → ∞, independently of the outcome sequence. In the examples below we use the theorem
to derive nonasymptotic inequalities of this spirit.

Proof: We estimate f (�(Rt )) in terms of f (�(Rt−1)) using Taylor’s theorem. Note that
∇ f (�(Rt−1)) = f ′(�(Rt−1))∇�(Rt−1). We obtain

f (�(Rt )) = f (�(Rt−1 + r t ))

= f (�(Rt−1)) + f ′ (�(Rt−1)) ∇(�(Rt−1)) · r t

+ 1

2

N∑
i=1

N∑
j=1

∂2 f (�)

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

(where ξ is some vector between Rt−1 and Rt )

≤ f (�(Rt−1)) + 1

2

N∑
i=1

N∑
j=1

∂2 f (�)

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

where the inequality follows by (1) and the fact that f ′ ≥ 0. Since � is additive, straight-
forward calculation shows that

N∑
i=1

N∑
j=1

∂2 f (�)

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

= f ′′ (�(ξ))
N∑

i=1

N∑
j=1

φ′(ξi )φ
′(ξ j )ri,t r j,t + f ′ (�(ξ))

N∑
i=1

φ′′(ξi )r
2
i,t

= f ′′ (�(ξ))

(
N∑

i=1

φ′(ξi )ri,t

)2

+ f ′ (�(ξ))
N∑

i=1

φ′′(ξi )r
2
i,t
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≤ f ′ (�(ξ))
N∑

i=1

φ′′(ξi )r
2
i,t (since f is concave)

≤ C(r t )

where at the last step we used the hypothesis of the theorem. Thus, we have obtained
f (�(Rt )) ≤ f (�(Rt−1)) + C(r t )/2. The proof is finished by iterating the argument.

In what follows, we will often write r t instead of r t (ŷt , yt ) when ŷt and yt are taken as
arbitrary elements of, respectively, X and Y . Moreover, we will always use Rt to denote
r1(ŷ1, y1) + · · · + r t (ŷt , yt ).

We now review two simple applications of Theorem 1. The first is for polynomial potential
functions. For p ≥ 1, define the p-norm of a vector u by

‖u‖p =
(

N∑
i=1

|ui |p

)1/p

and further let a+ denote max{0, a}.

Corollary 1. Assume that a prediction algorithm satisfies (1) with the potential function

�(u) =
N∑

i=1

(ui )
p
+, (2)

where p ≥ 2. Then

�(Rt )
2/p ≤ (p − 1)

t∑
s=1

‖r s‖2
p and max

1≤i≤N
Ri,t ≤

√√√√(p − 1)
t∑

s=1

‖r s‖2
p.

Proof: Apply Theorem 1 with f (x) = x2/p and φ(x) = (x)p
+. By straightforward calcu-

lation,

f ′(x) = 2

px (p−2)/p
.

On the other hand, since φ′′(x) = p(p − 1)(x)p−2
+ , by Hölder’s inequality,

N∑
i=1

φ′′(ui )r
2
i,t = p(p − 1)

N∑
i=1

(ui )
p−2
+ r2

i,t

≤ p(p − 1)

(
N∑

i=1

((ui )
p−2
+ )p/(p−2)

)(p−2)/p (
N∑

i=1

|ri,t |p

)2/p

.
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Thus,

f ′ (�(u))
N∑

i=1

φ′′(ui )r
2
i,t ≤ 2(p − 1)

(
N∑

i=1

|ri,t |p

)2/p

.

The conditions of Theorem 1 are then satisfied with the choice C(r t ) = 2(p − 1) ‖r t‖2
p.

Since �(0) = 0, Theorem 1 implies the first statement. The second follows from the first
simply because

max
1≤i≤N

Ri,t ≤
(

N∑
i=1

R p
i,t

)1/p

= �(Rt )
1/p.

Another simple and important choice for the potential function is the exponential potential,
treated in the next corollary.

Corollary 2. Assume that a prediction algorithm satisfies (1) with the potential function

�(u) =
N∑

i=1

eηui , (3)

where η > 0 is a parameter. Then

ln �(Rt ) ≤ ln N + η2

2

t∑
s=1

max
1≤i≤N

r2
i,s

and, in particular,

max
1≤i≤N

Ri,t ≤ ln N

η
+ η

2

t∑
s=1

max
1≤i≤N

r2
i,s .

Proof: Choosing f (x) = (1/η) ln x and φ(x) = eηx , the conditions of Theorem 1 are
satisfied with C(r t ) = η max1≤i≤N r2

i,t . Using �(0) = N then yields the result.

Remark. The polynomial potential was considered by Hart and Mas-Colell (2001) and,
in the context of binary classification, by Grove, Littlestone, and Schuurmans (1997),
where it was used to define the p-norm Perceptron. The exponential potential is also
reminiscent of the smooth fictitious play approach used in game theory (Fudenberg &
Levine, 1995) (in fictitious play, the player chooses the pure strategy that is best given
the past distribution of the adversary’s plays; smoothing this choice amounts to intro-
ducing randomization). In learning theory, algorithms based on the exponential potential
have been intensively studied and applied to a variety of problems—see, e.g., (Cesa-Bianchi
et al., 1997; Freund & Schapire, 1997; Littlestone & Warmuth, 1994; Vovk, 1990,
1998).
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If r t ∈ [−1, 1]N for all t , then the choice p = 2 ln N for the polynomial potential yields
the bound

max
1≤i≤N

Ri,t ≤

√√√√(2 ln N − 1)
t∑

s=1

(
N∑

i=1

|ri,s |2 ln N

)1/ ln N

≤
√

(2 ln N − 1)N 1/ ln N t =
√

(2 ln N − 1) et .

(This choice of p was also suggested by Gentile (2001) in the context of p-norm perceptron
algorithms.) A similar bound can be obtained, under the same assumption on the r t ’s, by
setting η = √

2 ln N/t in the exponential potential. Note that this tuning of η requires
knowledge of the horizon t .

3. Weighted average predictors

In this section, we consider one of the main applications of the potential-based strategy
induced by the generalized Blackwell condition, that is, the experts’ framework mentioned
in Section 1. Recall that, in this framework, the i-th component of the drift vector at time t
takes the form of a regret

ri,t (ŷt , yt ) = �(ŷt , yt ) − �( fi,t , yt )

where �(ŷt , yt ) is the loss of the predictor and �( fi,t , yt ) is the loss of the i-th expert. Denote
∂�(u)/∂ui by ∇i�(u) and assume ∇i�(u) ≥ 0 for all u ∈ R

N . A remarkable fact in this
application is that, if X is a convex subset of a vector space and the loss function � is
convex in its first component, then a predictor satisfying condition (1) is always obtained by
averaging the experts’ predictions weighted by the normalized potential gradient. Indeed,
note that condition (1) is equivalent to

(∀ y ∈ Y) �(ŷt , y) ≤
∑N

i=1 ∇i�(Rt−1)�( fi,t , y)∑N
j=1 ∇ j�(Rt−1)

(4)

Now by convexity of �, we have that (4) is implied by

(∀ y ∈ Y) �(ŷt , y) ≤ �

(∑N
i=1 ∇i�(Rt−1) fi,t∑N

j=1 ∇ j�(Rt−1)
, y

)

which is clearly satisfied by choosing

ŷt =
∑N

i=1 ∇i�(Rt−1) fi,t∑N
j=1 ∇ j�(Rt−1)

.
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Example. Consider the exponential potential function of Corollary 2. In this case, the
weighted average predictor described above simplifies to

ŷt =
∑N

i=1 exp
(
η

∑t−1
s=1(�(ŷs, ys) − �( fi,s, ys))

)
fi,t∑N

i=1 exp
(
η

∑t−1
s=1(�(ŷs, ys) − �( fi,s, ys))

)

=
∑N

i=1 exp
(
−η

∑t−1
s=1 �( fi,s, ys)

)
fi,t∑N

i=1 exp
(
−η

∑t−1
s=1 �( fi,s, ys)

) . (5)

This is the well-known Weighted Majority predictor of Littlestone and Warmuth (1994),
and Corollary 2 recovers, up to constant factors, previously known performance bounds—
(see, e.g., Cesa-Bianchi (1999)). Similarly, Corollary 1 may be used to derive performance
bounds for the predictor

ŷt =
∑N

i=1

( ∑t−1
s=1(�(ŷs, ys) − �( fi,s, ys))

)p−1

+
fi,t

∑N
i=1

( ∑t−1
s=1(�(ŷs, ys) − �( fi,s, ys))

)p−1

+

(6)

based on the polynomial potential (2).

These results are summarized as follows.

Corollary 3. Assume that the decision space X is a convex subset of a vector space and
let � be a loss function which is convex in its first component and bounded between 0 and
1. Then the exponential weighted average predictor (5) with parameter η = √

2 ln N/t
satisfies, for all sequences y1, y2, . . . ,

t∑
s=1

�(ŷs, ys) ≤ min
i=1,...,N

t∑
s=1

�( fi,s, ys) +
√

2t ln N ,

and the polynomial weighted average predictor (6) with parameter p = 2 ln N satisfies,
for all sequences y1, y2, . . . ,

t∑
s=1

�(ŷs, ys) ≤ min
i=1,...,N

t∑
s=1

�( fi,s, ys) +
√

te(2 ln N − 1).

The beauty of the Weighted Majority predictor of Corollary 3 is that it only depends on
the past performance of the experts, whereas the predictions made using polynomial (and
other general) potentials depend on the past predictions ŷs , s < t as well.

Remark. In some cases Theorem 1 gives suboptimal bounds. In fact, the arguments of
Theorem 1 use Taylor’s theorem to bound the increase of the potential function. However,
in some situations the value of the potential function is actually nonincreasing. The following
property is proven by repeating an argument of Kivinen and Warmuth (1999).
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Proposition 1. Consider the weighted majority predictor (5). If the loss function � is such
that the function F(z) = e−η�(z,y) is concave for all y ∈ Y, then for all t ≥ 1, �(Rt ) ≤ �(0)
where � is the exponential potential function (3). In particular, since �(0) = N , we have
maxi=1,...,N Ri,t ≤ ln(N )/η.

Proof: It suffices to show that �(Rt ) ≤ �(Rt−1) or, equivalently, that

N∑
i=1

exp

(
−η

t−1∑
s=1

�( fi,s, ys)

)
eη(�(ŷt ,yt )−�( fi,t ,yt ))

≤
N∑

i=1

exp

(
−η

t−1∑
s=1

�( fi,s, ys)

)
,

which, denoting wi,t−1 = exp(−η
∑t−1

s=1 �( fi,s, ys)), may be written as

e−η�(ŷt ,yt ) ≥
∑N

i=1 wi,t−1e−η�( fi,t ,yt )∑N
i=1 wi,t−1

.

But since ŷt = (
∑N

i=1 wi,t−1 fi,t )/(
∑N

i=1 wi,t−1), this follows by the concavity of F(z) and
Jensen’s inequality.

Simple and common examples of loss functions satisfying the concavity assumption of
the proposition include the square loss �(z, y) = (z − y)2 for X = Y = [0, 1] with η = 1/2
and the logarithmic loss �(z, y) = y ln(y/z) + (1 − y) ln((1 − y)/(1 − z)) with η = 1. For
more information on this type of prediction problems we refer to Vovk (2001), Haussler,
Kivinen and Warmuth (1998), and Kivinen and Warmuth (1999). Observe that the proof of
the proposition does not make explicit use of the generalized Blackwell condition.

We close this section by mentioning that classification algorithms based on time-varying
potentials or nonadditive potential functions have been defined and analyzed in Auer, Cesa-
Bianchi, and Gentile (2002), Cesa-Bianchi, Conconi, and Gentile (2002).

4. The quasi-additive algorithm

In this section, we show that the quasi-additive algorithm of Grove, Littlestone and
Schuurmans (whose specific instances are the p-norm Perceptron (Gentile, 2001; Grove,
Littlestone, & Schuurmans, 1997), the classical Perceptron (Block, 1962; Novikoff, 1962;
Rosenblatt, 1962), and the zero-threshold Winnow algorithm (Littlestone, 1989)) is a
special case of our general decision strategy. Then, we derive performance bounds as
corollaries of Theorem 1.

We recall that the quasi-additive algorithm performs binary classification of attribute
vectors x = (x1, . . . , xN ) ∈ R

N by incrementally adjusting a vector w ∈ R
N of weights.

If w t is the weight vector before observing the t-th attribute vector xt , then the quasi-
additive algorithm predicts the unknown label yt ∈ {−1, 1} of xt with the thresholded
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linear function ŷt = SGN(xt · w t ). If the correct label yt is different from ŷt , then the weight
vector is updated, and the precise way this update occurs distinguishes the various instances
of the quasi-additive algorithm.

To fit and analyze the quasi-additive algorithm in our framework, we specialize the
abstract decision problem of Section 1 as follows. The decision space X and the outcome
space Y are both set equal to {−1, 1}. The drift vector at time t is the function r t (ŷt , yt ) =
I{yt �=ŷt }yt xt where I{E} is the indicator function of event E . Instances of the quasi-additive
algorithm are parametrized by a potential function � and use the gradient of the current
potential as weight vector, that is, w t = ∇�(Rt−1). Hence, the weight update is defined by

w t+1 = ∇�
(
(∇�)−1(w t ) + r t

)
where (∇�)−1 is the functional inverse of ∇� (as we will show in Section 4.3, this inverse
always exists for the potentials considered here). We now check that condition (1) is satisfied.
If ŷt = yt , then r t (ŷt , yt ) = 0 and the condition is satisfied. Otherwise, r t · ∇�(Rt−1) =
I{yt �=ŷt }yt xt · w t ≤ 0, and the condition is satisfied in this case as well.

In the rest of this section, we denote by Mt = ∑t
s=1 I{yt �=ŷt } the total number of mistakes

made by the specific quasi-additive algorithm being considered.

4.1. The p-norm Perceptron

As defined in Grove, Littlestone, and Schuurmans (1997), the p-norm Perceptron uses
the potential based on φ(u) = |u|p, which is just a slight modification of our polynomial
potential (2). We now derive a generalization of the Perceptron convergence theorem (Block,
1962; Novikoff, 1962). A version somewhat stronger than ours was proven by Gentile
(2001).

For an arbitrary sequence (x1, y1), . . . , (xt , yt ) of labeled attribute vectors, let Dt =∑t
s=1 max{0, γ − ys xs · v0} be the total deviation (Freund & Schapire, 1999b; Gentile,

2001; Gentile & Warmuth, 1999) of v0 ∈ R
N with respect to a given margin γ > 0. Each

term in the sum defining Dt tells whether, and by how much, the linear threshold classifier
based on weight vector v0 missed to classify, to within a certain margin, the corresponding
example. Thus Dt measures a notion of loss, called hinge loss in (Gentile & Warmuth,
1999), different from the number of misclassifications, associated to the weight vector v0.

Corollary 4. Let (x1, y1), (x2, y2), . . . ∈ R
N × {−1, 1} be any sequence of labeled at-

tribute vectors. Then the number Mt of mistakes made by the p-norm Perceptron on a prefix
of arbitrary length t of this sequence such that ‖xs‖p ≤ X p for some X p and for all s ≤ t
is at most

Mt ≤ Dt

γ
+ p − 1

2

(
X p

γ

)2

+
√

(p − 1)2 X4
p + 4(p − 1)γ Dt X2

p

4γ 4

≤ Dt

γ
+ (p − 1)

(
X p

γ

)2

+
√

(p − 1)

(
X p

γ

)2 Dt

γ
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where Dt is the hinge loss of v0 with respect to margin γ for any v0 of unit q-norm (q being
the dual norm of p) and any γ > 0.

Proof: Adapting the proof of Corollary 1 to the potential based on φ(u) = |u|p, and using
the bound on ‖xt‖p, we find that ‖Rt‖2

p ≤ (p − 1)X2
p Mt . On the other hand, let v0 ∈ R

N

be any vector such that ‖v0‖q = 1. Then

‖Rt‖p ≥ Rt · v0 (by Hölder’s inequality)

= Rt−1 · v0 + I{yt �=ŷt }yt xt · v0

≥ Rt−1 · v0 + I{yt �=ŷt }(γ − dt )

= · · · ≥ γ Mt − Dt .

Piecing together the two inequalities, and solving the resulting inequality for Mt , yields the
desired result.

4.2. Zero-threshold Winnow

The zero-threshold Winnow algorithm is based on the exponential potential (3). As we did
for the p-norm Perceptron, we derive as a corollary a robust version of the bound shown
by Grove, Littlestone, and Schuurmans (1997). Let Dt be the same as in Corollary 4.

Corollary 5. Let (x1, y1), (x2, y2), . . . ∈ R
N × {−1, 1} be any sequence of labeled at-

tribute vectors. On a prefix of arbitrary length t of this sequence such that

‖xs‖∞ ≤ X∞ for some X∞ and for all s ≤ t ,

L ≥ Dt/γ for some probability vector v0 and for some L , γ > 0,

the number Mt of mistakes made by zero-threshold Winnow tuned with

η =




γ /(X2
∞) if L < 2(X∞/γ )2 ln N√

2 ln N

X2∞L
otherwise

is at most 6 (X∞/γ )2 ln N if L < 2(X∞/γ )2 ln N , and at most

Dt

γ
+

√
2L

(
X∞
γ

)2

ln N + 2

(
X∞
γ

)2

ln N .

otherwise.

Proof: Corollary 2 implies that ln �(Rt ) ≤ ln N +(η2/2)X2
∞Mt . To obtain a lower bound

on ln �(Rt ), consider any vector v0 of convex coefficients. Then we use the well-known
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“log-sum inequality”—(see Cover & Thomas, 1991, p. 29)—which implies that, for any
vectors u, v ∈ R

N of nonnegative numbers with
∑N

i=1 vi = 1,

ln
N∑

i=1

ui ≥
N∑

i=1

vi ln ui + H (v),

where H (v) = − ∑N
i=1 vi ln vi is the entropy of v . Therefore, for any vector v0 of convex

coefficients such that ysv0 · xs ≥ γ for all s = 1, . . . , t ,

ln �(Rt ) = ln
N∑

i=1

eηRi,t ≥ ηRt · v0 + H (v0) ≥ η (γ Mt − Dt ) + H (v0)

where in the last step we proceeded just like in the proof of Corollary 4. Putting the upper
and lower bounds for ln �(Rt ) together we obtain

η (γ Mt − Dt ) + H (v0) ≤ ln N + (η2/2)X2
∞Mt

which, dropping the positive term H (v0), implies

Mt

(
1 − η

2

X2
∞
γ

)
≤ Dt

γ
+ ln N

ηγ
. (7)

We show the proof only for the case L ≥ 2(X∞/γ )2 ln N . Letting β = (ηX2
∞)/(2γ ), and

verifying that β < 1, we may rearrange (7) as follows

Mt ≤ 1

1 − β

(
Dt

γ
+ 1

2β

(
X∞
γ

)2

ln N

)

≤ Dt

γ
+ 1

1 − β

(
β

Dt

γ
+ 1

β

A

2

)
where we set A = (X∞/γ )2 ln N

≤ Dt

γ
+ 1

1 − β

(
βL + 1

β

A

2

)
since L ≥ Dt/γ by hypothesis

≤ Dt

γ
+

√
2AL

1 − √
A/(2L)

since β = √
A/(2L) by our choice of η

≤ Dt

γ
+

√
2AL + 2A

whenever L ≥ 2A, which holds by hypothesis.

4.3. Potentials and Bregman divergences

An alternative analysis for the quasi-additive algorithm, which was proposed in Warmuth
and Jagota (1997) and Kivinen and Warmuth (2001), leads to mistake bounds essentially
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equivalent to ours. This alternative analysis is based on the notion on Bregman diver-
gences (Bregman, 1967). In this section we re-derive a (very general) form of these mistake
bounds starting from our notion of potential. Concrete bounds for particular choices of the
potential functions can be also derived just as we did for our potential-based analysis.

Fix a differentiable strictly convex nonegative additive potential � on R
N . For any pair

of vectors u, v ∈ R
N , the Bregman divergence from u to v is defined by

�� (u, v) = �(u) − �(v) − (u − v)∇�(v).

Hence, �� (u, v) is the error of the first-order Taylor approximation of the convex potential
�(u) around v .

The only property of Bregman divergences we use is the following trivial fact.

Fact 1. For all u, v, w ∈ R
N ,

�� (u, v) + �� (v, w) = �� (u, w) + (u − v) (∇�(w) − ∇�(v)) .

The Bregman divergence �� (·, ·), defined directly on the additive potential �(u) =∑
i φ(ui ) on which the quasi-additive algorithm is defined, turns out to be the wrong quantity

for deriving mistake bounds. Instead, we will use the related potential �̃(u) = ∑N
i=1 φ̃(ui ),

where φ̃ : R → R has the form

φ̃(u) =
∫ u

−∞
(φ′)−1(s) ds.

Note that the inverse (φ′)−1 exists since we assumed φ′′ > 0.
The additive potential �̃ has the following key property.

Fact 2. ∇�̃ = (∇�)−1.

Proof: Pick any R ∈ R
N and let w = ∇�(R). Then

∇�̃(w)i = (φ′)−1(wi ) = (φ′)−1(φ′(Ri )) = Ri

and thus ∇�̃(w) = R.

We are now ready to derive a bound on the cumulative hinge loss, or total deviation, of the
quasi-additive algorithm. As the hinge loss upper bounds the number of mistakes, this will
also serve as a mistake bound for the same algorithm. Our derivation is taken from Warmuth
and Jagota (1997) and Kivinen and Warmuth (2001); we just change their notation to the
one used here.

Theorem 2. Let (x1, y1), (x2, y2), . . . ∈ R
N ×{−1, 1} be any sequence of labeled attribute

vectors. If the quasi-additive algorithm is run with potential � then its cumulative hinge
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loss
∑t

s=1(γ − ys w s · xs)+ on a prefix of arbitrary length t of this sequence is at most

Dt + ��̃ (v0, 0) +
t∑

s=1

��̃ (w s, w s+1)

where Dt is the cumulative hinge loss of v0 at margin γ , for any v0 ∈ R
N and any γ > 0.

Proof: For all y ∈ {−1, 1}, all γ > 0, and all u, x ∈ R
N let �(u · x, ys) be the hinge loss

(γ − y u · x)+. Let also

∇�(u · x, y) =
(

∂�(u · x, y)

∂u1
, . . . ,

∂�(u · x, y)

∂uN

)

and note that when γ > y u · x, then −∇�(u · x, y) = y x is the drift vector r (u · x, y). Now
fix γ > 0 and v0 ∈ R

N . Then for every s = 1, . . . , t such that �(w s · xs, ys) is positive, we
have

�(w s · xs, ys) − �(v0 · xs, ys)

≤ −(v0 − w s) · ∇�(w s · xs, ys)

(by Taylor’s theorem and using convexity of the hinge loss)

= (v0 − w s) · (Rs − Rs−1)

(as −∇�(w s · xs, ys) = r s)

= (v0 − w s) · (∇�̃(w s+1) − ∇�̃(w s)
)

(by Fact 2 recalling that w s = ∇�(Rs−1) for each s ≥ 1).

= (��̃ (v0, w s) − ��̃ (v0, w s+1) + ��̃ (w s, w s+1))

(by Fact 1)

By summing over s, using the positivity of Bregman divergences, and recalling that w1 = 0
we get the desired result.

Remark. Unlike our potential-based analysis, the analysis based on Bregman divergences
shown above can be naturally applied not only to the binary classification problem but also
to regression problems with any arbitrary convex loss. However, while the divergence-based
analysis appears to be limited to predictors based on weighted averages, the potential-based
analysis can handle more general predictors like those introduced in Section 6. It is therefore
an interesting open problem to understand whether these more complex predictors could
be analyzed using Bregman divergences (or, alternatively, to show that the problems of
Section 6 can be solved by weighted average predictors).

5. Boosting

Boosting algorithms for binary classification problems receive in input a labeled sample
(v1, �1), . . . , (vN , �N ) ∈ V × {−1, 1}, where V is a generic instance space, and return
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linear-threshold classifiers of the form SGN(
∑t

s=1 αshs), where αs ∈ R and the functions
hs : V → [−1, 1] belong to a fixed hypothesis space H. In the boosting by resampling
schema, the classifier is built incrementally: at each step t , the booster weighs the sample
and calls an oracle (the so-called weak learner) that returns some ht ∈ H. Then the booster
chooses αt based on the performance of ht on the weighted sample and adds αt ht to the
linear-threshold classifier. Boosting by resampling can be easily fitted in our framework
by letting, at each round t , αt be the decision maker’s choice (X = R) and ht be the
outcome (Y = H). The drift function r t is defined by ri,t (αt , ht ) = −αt�i ht (vi ) for each
i = 1, . . . , N , and condition (1) takes the form

∇�(Rt−1) · r t = −αt

N∑
i=1

�i ht (vi )∇i�(Rt−1) ≤ 0.

Define m̄(ht ) = ∑N
i=1 �i ht (vi )∇i�(Rt−1) as the weighted margin of ht . We see that (1)

corresponds to αt m̄(ht ) ≥ 0. Freund and Schapire’s AdaBoost (1997) is a special case of
this schema: the potential is exponential and αt is chosen in a way such that (1) is satisfied.
We recover the known bound on the training accuracy of the classifier output by AdaBoost
as a special case of our main result.

Corollary 6. For every training set (v1, �1), . . . , (vN , �N ) ∈ V × {−1, 1}, and for every
sequence h1, h2, . . . of functions ht : V → [−1, 1], if � is the exponential potential (3)
with η = 1, then the training error of the classifier f = SGN(

∑t
s=1 α̃shs) satisfies

1

N

N∑
i=1

I{ f (vi )�=�i } ≤ exp

(
−1

2

t∑
s=1

α̃2
s

)
,

where α̃s = m̄(hs)/(
∑N

i=1
exp(Ri,t−1)) is the normalized weighted margin.

Proof: The result does not follow directly from Corollary 2. We need to slightly modify
the proof of Theorem 1 when the negative term f ′(�(Rt−1))∇�(Rt−1) · r t was dropped.
Here, this term takes the form

−α̃t

N∑
i=1

�i ht (vi ) exp(Ri,t−1)∑N
j=1 exp(R j,t−1)

= − α̃t m̄(ht )∑N
j=1 exp(R j,t−1)

= −α̃2
t .

We keep this term around and proceed by noting that

C(r t ) = max
1≤i≤N

r2
i,t = max

1≤i≤N
(α̃t�i ht (vi ))

2 ≤ α̃2
t .
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Continuing as in the proof of Corollary 2, we obtain

ln �(Rt ) ≤ ln N +
t∑

s=1

(
−α̃2

s + α̃2
s

2

)
= ln N − 1

2

t∑
s=1

α̃2
s .

By rearranging and exponentiating we get

�(Rt )

N
≤ exp

(
−1

2

t∑
s=1

α̃2
s

)
.

As, for the exponential potential,

1

N

N∑
i=1

I{ f (vi )�=�i } ≤ 1

N

N∑
i=1

exp

(
−�i

t∑
s=1

α̃shs(vi )

)
= �(Rt )

N

we get the desired result.

6. Potential-based algorithms in game theory

Our abstract decision problem can be applied to the problem of playing repeated games.
Consider first a game between a player and an adversary. At each round of the game, the
player chooses an action (or pure strategy) i ∈ {1, . . . , m} and, independently, the adversary
chooses an action y ∈ Y . The player’s loss L(i, y) is the value of a loss function L :
{1, . . . , m}×Y → [0, 1] for all (i, y) ∈ {1, . . . , m}×Y . Now suppose that, at the t-th round
of the game, the player chooses an action according to the mixed strategy (i.e., probability
distribution over actions) pt = (p1,t , . . . , pm,t ), and suppose the adversary chooses action
yt ∈ Y . Then the regret for the player is the vector r t ∈ R

m , whose j-th component is

r j,t (pt , yt ) =
m∑

k=1

pk,t L(k, yt ) − L( j, yt ) =
m∑

k=1

pk,t (L(k, yt ) − L( j, yt )) . (8)

The first term
∑m

k=1 pk,t L(k, y) is just the expected loss of the predictor, and this is com-
pared to L( j, y), the loss of playing action j . Thus, the j-th component of the drift r t (pt , y)
measures the expected change in the player’s loss if it were to deterministically choose
action j , and the adversary did not change his action. If all components of the per-round
cumulative regret vector Rt/t = (r1 + · · · + r t )/t were close to zero, then it would mean
that the player has played as well as the best pure action. This notion was made precise
by Hannan as follows: A player is Hannan consistent if the per-round regret vector Rt/t
converges to the zero vector as t grows to infinity.

Our general decision strategy can be used to play repeated games of this type by letting
the decision space X be the set of distributions on the player set {1, . . . , m} of actions and
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the drift vector be the regret vector (8). Define now a general potential-based mixed strategy
pt by

pi,t = ∇i�(Rt−1)∑m
k=1 ∇k�(Rt−1)

(9)

for t > 1 and pi,1 = 1/m for i = 1, . . . , m, where � is an appropriate twice dif-
ferentiable additive potential function. It is immediate to see that for any value of the
outcome yt ,

∇�(Rt−1) · r t = 0

and therefore condition (1) is satisfied.
The Hedge algorithm (Freund & Schapire, 1997) and the strategy in Blackwell’s proof

of the approachability theorem are special cases of (9) for, respectively, the exponential
potential (3) and the polynomial potential (2) with p = 2. Corollaries 1 and 2 imply the
Hannan consistency of these two algorithms. Hart and Mas-Colell (2001) characterize the
whole class of potentials for which condition (1) yields a Hannan consistent player.

6.1. Multiplicative algorithms for playing repeated games

Next we consider the setup discussed by Freund and Schapire (1999a) for adaptive game
playing. Here the game is defined by an m × M loss matrix S of entries in [0, 1]. In
each round t the row player chooses a row of S according to a mixed strategy pt =
(p1,t , . . . , pm,t ) and the column player chooses a column of S according to the mixed
strategy q t = (q1,t , . . . , qM,t ). The row player’s loss at time t is

S(pt , q t ) =
m∑

i=1

M∑
j=1

pi,t q j,t S(i, j)

and its goal is to achieve a cumulative loss
∑t

s=1 S(pt , q t ) almost as small as the cumulative
loss minp

∑t
s=1 S(p, q t ) of the best fixed mixed strategy.

Freund and Schapire introduce an algorithm, based on a multiplicative updating of
weights, defined by

pi,t =
exp

(
−η

∑t−1
s=1 S(i, qs)

)
∑m

k=1 exp
(
−η

∑t−1
s=1 S(k, qs)

) i = 1, . . . , m

with pi,1 set to 1/m, where η > 0 is an appropriately chosen constant. Next, we point out
that this algorithm is just a special case of the potental-based algorithm (9) defined above. To
see this, define the action space Y of the adversary as the set of all probability distributions
q over the columns, and the loss function L by

L(i, q) = S(i, q) =
M∑

j=1

q j S(i, j).
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Then we are back to the problem described at the beginning of this section. Indeed, defining
the drift vector r t as in (8), it is immediate to see that the multiplicative weight algorithm
of Freund and Schapire is just (9) with the exponential potential (3).

In view of this observation, it is now straightforward to derive performance bounds for
the multiplicative update algorithm. Corollary 2 implies that

ln �(Rt ) = ln
m∑

i=1

eηRi,t ≤ ln m + tη2

2
.

To obtain a lower bound for ln �(Rt ) we use again the log-sum inequality (see Section 4.2)
to conclude that, for any probability vector p,

ln �(Rt ) ≥ ηRt · p + H (p) = η

(
t∑

s=1

S(ps, qs) −
t∑

s=1

S(p, qs)

)
+ H (p).

Comparing the upper and lower bounds for ln �(Rt ) we obtain the following result.

Corollary 7. The multiplicative update algorithm defined above satisfies

1

t

t∑
s=1

S(ps, qs) ≤ min
p

(
1

t

t∑
s=1

S(p, qs) − H (p)

tη

)
+ ln m

tη
+ η

2
.

This bound is very similar to the one derived by Freund and Schapire (1999a). By choosing
η = √

2 ln m/t and using the nonnegativity of the entropy, we obtain

1

t

t∑
s=1

S(ps, qs) ≤ min
p

1

t

t∑
s=1

S(p, qs) +
√

2 ln m

t
,

which is an insignificant improvement over Corollary 4 of Freund and Schapire (1999a).
Of course, potential functions different from the exponential may be used as well. By

varying the potential function, we obtain a whole family of algorithms whose performance
bounds are straightforward to obtain by Theorem 1.

6.2. Generalized regret in learning with experts

In this section we consider a more general notion of regret, which we call “generalized
regret”, introduced by Lehrer (2001). As we will see, generalized regret includes, as special
cases, several other notions of regret, such as those defined by Fudenberg and Levine (1999)
and by Foster and Vohra (1997). According to our definition, a repeated game can be viewed
as an on-line prediction problem with a randomized predictor. Hence, we can use generalized
regret to analyze such on-line prediction problems. Consider the prediction with experts
framework, where f1,t , . . . , fN ,t ∈ {1, . . . , m} denote the predictions of the experts at time
t . For each expert i = 1, . . . , N , define an activation function Ai : {1, . . . , m}×N → {0, 1}.
The activation function determines whether the corresponding expert is active based on the
current step index t and, possibly, on the predictor’s guess k. At each time instant t , the
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values Ai (k, t), i = 1, . . . , N , k = 1, . . . , m of the activation function are revealed to the
predictor who then decides on his guess pt = (p1,t , . . . , pm,t ). Define the generalized regret
of a randomized predictor with respect to expert i at round t by

ri,t (pt , yt ) =
m∑

k=1

pk,t Ai (k, t)(L(k, yt ) − L( fi,t , yt )). (10)

Hence, the (instantaneous) generalized regret with respect to expert i is nonzero only when
expert i is active,

To illustrate the power of this general notion of regret, next we describe some important
special cases.

Example (External regret). The simplest special case is when N = m, fi,t = i , and
Ai (k, t) = 1 for all k and t . Then the problem reduces to the one described in the previous
section and the drift function becomes just (8). In game theory, this regret is sometimes
called “external” (as opposed to the internal regret described below).

Example (Specialists). The general formulation permits us to consider a much wider
family of prediction problems. Examples include variants of the learning with experts
framework, such as “shifting experts” or the more general “specialists” (Freund et al.,
1997). In the specialists framework, the activation function Ai (k, t) depends arbitrarily on
the round index t but not on the actual predictor’s guess k. This setup may be useful to model
prediction scenarios where experts are allowed to occasionally abstain from predicting
(experts may want to abstain for several reasons; for instance, when they are not confident
in their prediction). See Cohen and Singer (1999) for a practical application of the specialists
framework.

Example (Internal regret). Here we discuss in detail the special case of the problem of
minimizing the so-called internal (or conditional) regret (Hart & Mas-Colell, 2000). Foster
and Vohra (1999) survey this notion of a regret and its relationship with the external regret
(8). Minimization of the internal regret plays a key role in the construction of adaptive
game-playing strategies which achieve, asymptotically, a correlated equilibrium (see Hart
& Mas-Colell, 2000). The formal description is as follows: the N = m(m − 1) experts are
labeled by pairs (i, j) for i �= j . Expert (i, j) predicts always i , that is, f(i, j),t = i for all
t , and it is active only when the predictor’s guess is j , that is, A(i, j)(k, t) = I{k= j}. Thus,
component (i, j) of the generalized regret vector r t (pt , y) ∈ R

N becomes

r(i, j),t (pt , y) = p j,t (L( j, y) − L(i, y)).

Hence, the cumulative internal regret with respect to expert (i, j),

R(i, j),t = r(i, j),1 + · · · + r(i, j),t

is the total amount by which the predictor’s cumulative loss would have increased, had he
predicted i at every time he predicted j . Thus, R(i, j),t may be interpreted as the regret the
predictor feels of not having predicted i each time he predicted j .
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The internal regret is formally similar to the external regret (8) but there are some impor-
tant differences. First of all, it is easy to see that internal regret is stronger than the usual
regret (8) in the sense that if a player succeeds in keeping the internal regret small for each
pairs (i, j), then every component of the per-round cumulative external regret vector stays
close to zero as well. Indeed, assume that max{0, R(i, j),t } ≤ at = o(t) for all possible pairs
(i, j) and for some sequence at ≥ 0, t ≥ 1. Let k ∈ {1, . . . , m} be the action with minimal
cumulative loss, that is,

∑t
s=1 L(k, ys) = min1≤i≤m

∑t
s=1 L(i, ys). Then the cumulative

regret based on (8) is just

t∑
s=1

(
m∑

j=1

p j,t L( j, ys) − L(k, ys)

)
=

m∑
j=1

R(k, j),t ≤ mat = o(t).

Thus, small cumulative internal regret implies small cumulative regret of the form con-
sidered in the experts’ framework. On the other hand, it is easy to show by example that,
for m ≥ 3, small cumulative regret does not imply small internal regret, and in fact, it is
significantly more difficult to construct strategies which achieve a small internal regret.

The key question now is whether it is possible to define a predictor pt satisfying condi-
tion (1) for the generalized regret. The existence of such pt is shown in the next result. For
such a predictor we may then apply Theorem 1 and its corollaries to obtain performance
bounds without further work.

Theorem 3. Consider a decision problem described above with drift function (10) and
potential �, where ∇� ≥ 0. Then a randomized predictor satisfying condition (1) is defined
by the unique solution to the set of m linear equations

pk,t =
∑m

j=1 p j,t
∑N

i=1 I{ fi,t =k} Ai ( j, t) ∇i�(Rt−1)∑N
i=1 Ai (k, t) ∇i�(Rt−1)

k = 1, . . . , m.

Observe that in the special case of N = m and fi,t = i and Ai (k, t) = 1, the predictor of
Theorem 3 reduces to the predictor (9). The proof of the theorem, which we relegate to the
appendix, is a generalization of a proof contained in Hart and Mas-Colell (2000).

We return now to the special case of internal regret. Hart and Mas-Colell (2000) first
proved the existence of a predictor for which the maximal cumulative internal regret
max j,k R( j,k),t is o(t). Indeed, their algorithm is just the special case of the predictor
of Theorem 3 for the polynomial potential with p = 2. For the algorithm of Hart and
Mas-Colell one obtains a bound of the form max j,k R( j,k),t = O(

√
tm). This bound may

be improved significantly for large values of m by considering the predictor of Theorem 3
with other potential functions. For example, if � is the exponential potential (3), then a
straightforward combination of Theorem 3 and Corollary 2 implies the following:

Corollary 8. If the randomized predictor of Theorem 3 is run with the exponential poten-
tial (3) and parameter η = √

4 ln m/t, then for all sequences y1, y2, . . . ∈ Y its internal
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regret satisfies

max
j,k

R( j,k),t ≤ 2
√

t ln m.

A similar bound may be obtained by using the polynomial potential with exponent p =
2 ln N . It is an interesting open question to find the best possible bound for max j,k R( j,k),t

in terms of m.

Appendix

Proof of Theorem 3: We write condition (1) as follows:

∇�(Rt−1) · r t

=
N∑

i=1

∇i�(Rt−1)
m∑

k=1

pk,t Ai (k, t)[L(k, yt ) − L( fi,t , yt )]

=
m∑

k=1

m∑
j=1

N∑
i=1

I{ fi,t = j}∇i�(Rt−1)pk,t Ai (k, t)[L(k, yt ) − L( fi,t , yt )]

=
m∑

k=1

m∑
j=1

N∑
i=1

I{ fi,t = j}∇i�(Rt−1)pk,t Ai (k, t)L(k, yt )

−
m∑

k=1

m∑
j=1

N∑
i=1

I{ fi,t = j}∇i�(Rt−1)pk,t Ai (k, t)L( fi,t , yt )

=
m∑

k=1

m∑
j=1

N∑
i=1

I{ fi,t = j}∇i�(Rt−1)pk,t Ai (k, t)L(k, yt )

−
m∑

k=1

m∑
j=1

N∑
i=1

I{ fi,t =k}∇i�(Rt−1)p j,t Ai ( j, t)L(k, yt )

=
m∑

k=1

L(k, yt )

[
N∑

i=1

∇i�(Rt−1)pk,t Ai (k, t)

−
m∑

j=1

N∑
i=1

I{ fi,t =k}∇i�(Rt−1)p j,t Ai ( j, t)

]
≤ 0.

Since the L(k, yt ) are arbitrary and nonnegative, the above is implied by

N∑
i=1

∇i�(Rt−1)pk,t Ai (k, t)

−
m∑

j=1

N∑
i=1

I{ fi,t =k}∇i�(Rt−1)p j,t Ai ( j, t) ≤ 0 (11)

for each k = 1, . . . , m. Solving for pk,t yields the result.
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We now check that such a predictor always exists. Let M be the (m × m) matrix whose
entries are

Mk, j =
∑N

i=1 I{ fi,t =k}∇i�(Rt−1)Ai ( j, t)∑N
i=1 ∇i�(Rt−1)Ai (k, t)

.

Then condition (11) is implied by M p = p. As ∇� ≥ 0, M is nonnegative, and thus
the eigenvector equation M p = p has a positive solution by the Perron-Frobenius theo-
rem (Seneta, 1981).
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