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Abstract

We show a natural graph-theoretic generalization of the Sauer—Shelah lemma. This result is
applied to bound the 4 and L; packing numbers of classes of functions whose range is an
arbitrary, totally bounded metric space. © 1998 Elsevier Science B.V. All rights reserved.
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1. Definitions and statement of the main result

Let |S| denote the cardinality of an arbitrary set S. For any n > 1, the nth power of
an undirected and irreflexive graph G = (V,E) is the graph G" = (V",E"), where V" is
the n-fold product of ¥ and {(v1,...,vs), (Wi,...,w,)} € E" if and only if {v;,w;} € E for
at least one 1 <i<n. Forall 4 = {i,...,is} C{1,...,n} and F C V", the projection
of F onto A is Fiu = {(vi,...,0;,) : (v1,...,0,) €EF}. A set CCV" is a cube in
G" if C = {v;,w1} x -+ X {vg, Wy}, where {v;,w;} € E, i = 1,...,n. We say that
(4,C) is a d-dimensional projected cube (d-P-cube) of a set F C V" if AC{1,...,n},
|4 =d > 0, and CCF}, is a cube in GY. Recall that a set of vertices in a graph
is a clique if any two of them are connected by an edge. Finally, for an undirected,
irreflexive graph G, let #(G,n,d) be the smallest nonnegative integer / such that every
clique F in G" with |F| > h contains a (d + 1)-P-cube.

Theorem 1.1. For any undirected, and irreflexive graph G = (V,E) and any n >
d>=0,
d n 1
1(G,md) < 22n|E])'°8 o]
This result, which is proven in Section 3, goes toward solving an open problem
stated in [9].
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2. Related results and a corollary

The problem of calculating the largest size N(G,n) of a clique in the nth power of
a graph G was first proposed, in an information-theoretic context, by Shannon [14]. In
Shannon’s original formulation, one wants to calculate the limit lim,_, ., n~ ' log N(G, n)
for a given (arbitrary) graph G (see [6] for a survey in this area.) Our motivation is
different from Shannon’s. We are interested in obtaining bounds on packing numbers
for classes of functions that take values in a metric space, like the bounds for packing
numbers of classes of real-valued functions given in [1, 5, 7, 12]. This leads to the
alternate question studied here: what is the size of the largest clique in G” that does
not contain a (d + 1)-dimensional projected cube. Bounds on this can be obtained
directly from Theorem 1.1. As can be seen, these bounds grow subexponentially in 7,
in contrast to the size N(G,n) of the largest (unrestricted) clique.

Special cases of Theorem 1.1, albeit sometimes with better bounds than those given
here, have been obtained before for particular graphs G. Let G = (V, E) be the complete
graph on ¥ = {v;,v;}. Then it can be shown that 4(G,n,d) = Zf.l:o (’l') To see this,
note that every set F C{vj,v,}" is a clique. So, in this case, /(G,n,d) < 27:0 @)
reduces to the statement that for every subset F C{v;,v,}" with |F| > Z?:o (") there
is a set 4 C{1,...,n} with |4| = d+1 such that F|, = {v;,v2}*"!, which is the Sauer—
Shelah lemma [13, 15] (independently proven, even if in a slightly weaker form, also
by Vapnik and Chervonenkis [16].) The lower bound A(G,n,d)> Y0, (") follows
from an easy and well-known construction, wherein F' is taken to be all elements of
{v1,v2}" with at most d occurrences of v;.

Now let G be the complete graph with » > 2 vertices. Then

d d i
3 (I:)(r ) <hGnd) <> <’:) (;) . (1)

i=0 i=0
This generalization of the Sauer—Shelah lemma was shown in [9].

For r =22 let G = (V,E) where V = {vy,...,v,} and, for each pair 1 <i,j<r,
{vi,v;} € E if and only if |i — j| > 1. The bound

hG,n,d) < 2(nr?) [1og: 3757, ()]

was shown, using a different terminology, in [1, Lemma 3.2].

Finally, for any » > 2 and n > d > 0, let h(r,n,d) be the maximum of A(G,n,d)
over all graphs G with r vertices. Using the lower bound in (1) above, and the facts
that for n>d > 1, (n/d)? < (%) < X0, (*) < (en/d)? and (5) < r?/2, we have the
following corollary of Theorem 1.1.

Corollary 2.1. For all r 22 and all n > d > 1.

n(r—1)\* A
< y ) < h(l",l’l,d) < 2(nr2)]—dlog2(enr /2d)'|.
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Hence for fixed 7 and d, the function h(n) = h(r,n,d) is Q(n?) and O(n°'°¢") for
some positive constant ¢. We conjecture that the lower bound is the more accurate
approximation. However, we presently know very little about this. It is still open
whether or not A(n) is in fact polynomial in #.

3. Proof of Theorem 1.1

The proof is based on an adaptation of [1, Lemma 3.2]. Fix any undirected and
irreflexive graph G = (V,E). For |E| = 0 or d = 0 the theorem is easily verified.
Hence assume |E| > 0 and d > 0. For all integers 4 > 2 and n > 1, let ¢(h,n) denote
the maximum integer ¢ such that every clique F in G" with |F| = & contains at least
t distinct P-cubes (P-cubes of any dimension d > 0 are allowed.) If for some 4 and
n no such an F exists, then #(4,n) is infinite.

Note that for 1 < |4| < d the number of P-cubes (4, C) in F is at most Zf.l:l (M IEN,

and hence strictly less than y & 27:0 (")|E|". Thus, if #(h,n) >y for some h, then

every clique F in G" of size 4 has a (d + 1)-P-cube. Hence 4(G,n,d) < h.
Let k = |E|. We now show that t(H(n,k,d),n) = y for all n > d > 1, where

d i
Hnk,d) % 22nk) = X OF],
We will use the following properties of the function #:
t(2,m) =1 for all m > 1, (P-1)

t(h,1) = (g) for all > 2, (P-2)

1Qm-Q2nk),n) =2 t2mn—1) foralln>2and all mk>1. (P—3)

Property (P-1) is readily verified. To show (P-2), fix an arbitrary # > 2 and assume,
without loss of generality, there exists a clique F in G with |F| = h. Fix any {f,g} CF.
Then {f,g} € E, implying that ({1},{f,g}) is a P-cube in G. As this holds for each
choice of {/,g} C F, there are at least (}) P-cubes in G and we conclude #(h, 1) > (%).

To show (P-3) assume, again without loss of generality, there exists a clique F in
G" with |F| = 2m-(2nk). Split F arbitrarily into 2m - nk unordered pairs. For each pair
{v,w} pick a coordinate i such that {v;,w;} € E. Then, the same coordinate i is picked
for at least 2m-k pairs, and for at least 2m of these pairs the set {v;, w;} is the same for
this fixed i. But then F' contains two subsets F’ and F", with |F'| = |[F"| = 2m, such
that for each f' € F', f! = v;, and for each f"" € F”, f” = w;. Let T = {1,...,n} \ i.
As G is irreflexive, F |’T and F "'T are both cliques in G"~!. Hence, by definition of
the function z, both F’ and F” contain at least /(2m,n — 1) P-cubes. Also, if for
some ACT, F' and F” have the same P-cube (4, C), then F also contains the P-cube
(AU {i},C x {v;,w;}). This implies that ¢t(2m - (2nk),n) = 2 - t(2m,n — 1), concluding
the proof of (P-3).

The proof of the theorem is completed by a simple case analysis. Let » = [log, ]
(recall that y = 3¢ (")k'.)
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Case 1: n > r. Let h =2(2nk)(2(n — 1)k)--- (2(n — r + 1)k). By applying (P-3) »
times and then using (P-1), we find that #(h,n) = 2" > y. As 2(2nk)" = h, and since
t is clearly monotone in its first argument, we get ¢ (2(2nk) ,n) = t(h,n) = y.

Case 2: n<r. Let h = 2(2nk)Y ~"*'(2(n — 1)k)---(2k). We apply (P-3) n — 1
times and find that ¢(h,n) >2""' ¢ (4k(2nk)’*”, 1). Asr—n =0 and k > 1, we have
4k(2nk)y " > 4. Applying (P-2), we find that #(h,n) =21 . (%@ > pr-igk
nk) =" =22k(nk)y " = y-2k(nk) ™ > y. As 2(2nk)" = h, again since ¢ is mono-
tone in its first argument it follows that 7 (2(2nk)",n) = t(h,n) = y. [

4. Applications

Theorem 1.1 leads to packing number bounds for families of functions taking values
in arbitrary metric spaces. We first recall the definition of packing numbers for a metric
space.

A set TCY is e-separated in a metric space (Y, p) if p(y,)") > e for any distinct
¥,y € T. The space (Y, p) is totally bounded if, for all ¢ > 0, the cardinality of its
largest e-separated subset, denoted by .#.(Y,p), is finite. The numbers .#.(Y,p) are
called packing numbers.

To derive bounds on packing numbers for families of functions mapping into a
metric space, we use generalizations of the notions of shattering and VC dimension
commonly used in the literature on empirical processes. Let F CY”. For any y > 0
and o > 2, we say that F (,y)-shatters a nonempty set {7,...,iz} C{1,...,n} if there
exists (v,w) € Y x Y7 such that, p(v;,w;) > ay for each j =1,...,d and

(vye{vl,WI}X"'X{Ud,Wd})(HfEF) p(yj7flj)<y for eaChjzla"'ad'

Let & be a family of functions f : X — Y, where X is an arbitrary set and (Y, p) is
a totally bounded metric space. Define, for each (xi,...,x,) € X",

T i) = LG [ () = f € T

For any y > 0 and o > 2, the (o,7)-dimension of %, denoted by piM,,(F ), is defined
by

max {d C(Ax e x9) F|x (a,7)-shatters {1,...,d}}.

If for each d > 0 there exists x € X? such that F x (o,7)-shatters {1,...,d}, then
we define piM,,(F ) = oo.

The notion of (o, y)-shattering defined here generalizes the notion of y-shattering
given in [1] (originally introduced by Kearns and Schapire in [10]), which is defined
only for the case when Y is a bounded interval on the real line and p(u,v) = |u—1v|. In
particular, for this metric space, if x is (4, y)-shattered then x is y-shattered in the sense
of [1]. This implies that pim,, is smaller than or equal to the P,-dimension defined
in [1] for all « > 4. As pointed out in [1], the P,-dimension is less than or equal to
the pseudo-dimension defined by Pollard [12] (see also [7]) for all y > 0.



N. Cesa-Bianchi, D. Haussler | Discrete Applied Mathematics 86 (1998) 27-35 31

Our packing bounds for function classes will depend on a quantity directly related to
the metric structure of (Y, p). An (o, y)-packed graph for (Y, p) is any undirected and
irreflexive graph G = (V,E) such that: (i) V' is a maximal y-separated set in (Y, p),
(ii) {v,v'} € E if and only if p(v,v") > ay, and (iii) K,,(Y,p) &ef |E| is minimized
over all graphs G = (V,E) satisfying (i) and (ii).

Note that since |V| = 4,(Y,p), k., (Y,p) < (0 7).

Finally, for any metric space (Y, p) and any n > 0, we associate with ¥” the metric
pn defined by p,(u,v) = max; <; <, p(u;,v;) for all u,v € Y.

Theorem 4.1. Let F be an arbitrary family of functions f : X — Y, where X is a
set and (Y, p) is a totally bounded metric space. If DM, (F ) =d < oo, then for all
n > d, for all x € X", and for all y > 0, o = 2,

d i
%(“7%)‘/(?\.‘?» pn) < 2(2nk) [IOgZ Zx:o (,)k -| ,
where k = 15,,(Y, p).

The packing numbers .#.(F |x, p,) for ¢ > 0 will be called 4., packing numbers for
(restrictions of) . To get the best bounds on these packing numbers from the above
theorem, one must explore different settings for & > 2 and y > 0 such that ¢ = (a+2)y.
For example, note that for fixed y, as o grows, piM,, can only get smaller, since the
conditions for (a,7y)-shattering get stricter. Hence the value d in the above theorem
gets smaller as o grows, giving a smaller upper bound. However, to balance out an
increase in o, one must reduce y, and by similar reasoning one sees that this has the
effect of increasing the bound.

The proof of Theorem 4.1 is based on the following lemma. Recall from Section 3
that

H(nkd) = 22nk) |2 X0 O]

Lemma 4.1. Let F be (a+2)y-separated in (Y", p,), where (Y, p) is a totally bounded
metric space. If |F| > H (n, Koy(Y, p), d) , then F (a,7)-shatters a set AC{1,...,n}
with |4 =d + 1.

Proof. Choose any (a, y)-packed graph G = (V,E) for (Y, p) and define a Voronoi tes-
sellation of Y through any mapping u: Y — V satisfying p(y, u(y)) = min,ecp p(y,v)
for each y € Y.

Pick any two distinct f,g € F and find a coordinate i, 1 <i <n, such that
o(fi,g9:) > (a+2)y. Note that, as V" is a maximal y-separated set, p( f;, u(f;)) <y and

p(gi, 11(gi)) < 7. Thus by the triangle inequality p(u(f:), 1i(gi)) > oy, implying {u(f5),
u(g:)} € E. Hence u(F)C V", defined by

H(F) ={(u(f1),-..u(fn)) : f € F},
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has cardinality |u(F)| > H (n,1,,(Y,p),d) and is a clique in G". Therefore, since
|E| = K4,(Y, p) by definition of G, by Theorem 1.1 there exists a set 4 = {i},...,iz41}
such that a subset C = {v;,,w;, } x -+ x {v;,,,,wi,.,} of u(F), is a cube in G'*'.

Since C is a cube in G*™', {v;,w;} is an edge in G for all 1 </ <d + 1. Hence,
p(vi,wi;) > ay, j=1,...,d+1. Choose any y € C. Find f € F such that u(f;,) = y;
for j=1,...,d+1. As V is a maximal y-separated set in (¥, p), we have p(fi, ;) <7
for j=1,...,d + 1. Hence 4 is (a,7)-shattered by F. [J

Proof of Theorem 4.1. By contradiction. Choose x € X" and let F = 7 |x be («+2)y-
separated in (Y", p,) with |F| > H(n,k,d). By Lemma 4.1, there exists 4 C{1,...,n}
with 4] = d + 1 that is («,7)-shattered by . |x. This contradicts the assumption that
DM, (F ) =d. []

Now let & be a family of functions from a set X into a metric space (Y,p) as
above and let P be a probability distribution on X. Define the distance dz,py on # by
dp,y(f.9) = [ p(f(x),g(x))dP(x). Using a trick from [4], we can apply Theorem 4.1
to bound the quantity .#.(%,dr,py) as well, which we refer to as the L, packing
numbers for F.

The diameter of a totally bounded metric space (Y,p) is sup, ,cy p(J, y"). Note
that from the triangle inequality, the diameter is at most ¢ times the size of its largest
e-separated subset plus 1, for any € > 0.

Theorem 4.2. Let F be an arbitrary family of functions f : X — Y, where X is a set
and (Y, p) is a totally bounded metric space with diameter R. If DM, (F ) =d < o0,
then there exists a constant ¢ > 0 such that for all y > 0 and for all o > 2,

i Kd R\, < GR))
Sup Mz (F ,drypy) < {<7> , (2)
P

where k = 1,,(Y,p) and the supremum is taken over all probability distributions P
on X.

This is complemented by the following result by Bartlett et al. (for completeness, we
repeat their proof using our terminology) showing that any function class of high (4, y)-
dimension must include a large set that is (y/2)-separated in the sense of Theorem 4.2.

Theorem 4.3 (Bartlett et al. [3]). Let & be a family of functions f : X — Y, where
X is a set and (Y,p) is a metric space. Then for any y > 0

sup My (F . drypy) =[],
P
where d = DMy, (F).

To prove Theorem 4.2 we use a “probabilistic method” that goes back to Dudley [4]
(Dudley’s trick also inspired Bartlett et al. in [3].) The basic tool in our proof is the
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following Chernoff-type bound (proven in [2] in a slightly less general form) on the
sum of independent random variables with bounded range.

Lemma 4.2. Let &y,..., &, be a sequence of mutually independent random variables
such that 0 < & <M, M < oo, and E[&1=p, i =1,...,n. Then, for all 6 =0,

n
Pr {Zéz g (1 _ 5)/'”1} < efézlm/(ZM).
i=1

Proof of Theorem 4.2. Let P be a distribution on X and let ¥ C.# be any maximal
set which is 2(a 4 2)y-separated with respect to dp,p). As (Y, p) is totally bounded,
we have sup,cy p(f(x),g(x)) <R, where 0 < R < oo is the diameter of (Y,p). Let
X1,...,X; be mutually independent random draws from P. For each {f,g} C ¥ we apply
Lemma 4.2, with 6 = 1/2, to the random variables &; = p(f(x;),g(x;)). Noting that
E[&] > 2(a+2)y, we get

Y 2
P {{frgl}}r&nz:p(f(x,) o)) < (oc+2)y} <(Pew (-“52™) @

Therefore, for n > (4R/(ot + 2)y)In (lfl) we can find x = (x,...,x,) € X" such that
for any {f,g} C % it holds that n='>"" | p(f1,g;) > (2 + 2)y. This clearly implies
that, for this x, %|x is (a4 2)y-separated in (¥, p,).

Let N = |9 = |9 x| and assume (i) n > (4R/(x+2)p)In(}) and (ii) N >
H(n,k,d) both hold, where k = x,,(Y, p). Then, using Lemma 4.1, we conclude that
9\x (a,7)-shatters a set of cardinality d + 1, contradicting DM, (%) < DM, (F ) =

As (i) is implied by n = (2R/y)In N, for (i) and (ii) to hold it is sufficient that

H(n,k,d) < N <&"7/CB, (4)

Using 2410g:(en)+1 1o upper bound H(n,k,d) — see discussion before Corollary 2.1, a
positive constant ¢ can be found such that n > (2R/y)cd In*(kdR/y) implies ¢"7/R) >
H([n],k,d) for all k> 1 and all d > 1. Hence, for each integer N > e "(kdR/) gome
integer n > (2R/y)cd In*(kdR/y) can be found such that (4) holds, leading to a con-
tradiction. It follows that

9] =N < [et 0sm]

Since ¥ was an arbitrary maximal 2(a + 2)y-separated subset of & with respect to
dr,(p), the result follows. []

Proof of Theorem 4.3. Choose # and choose 7 > 0. Let d = piMy,(F). Let x € X¢
be a sequence that is (4,7)-shattered by some F C 7 |y of cardinality 29, Let C(y/2)
be the minimum integer ¢ such that

[{g € F : 4(f,8) <7/2}|<c forall f€F,
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where we define 4(f,g)=d! Z?Zl o(fi,9;). For any two f,g € F let

e(f.e)={i1<is<d p(fi9) > 27}

Note that, by definition of (4, y)-shattering and by our choice of F, e(f,g)=e(f,g’) if
and only if g=g’ for any f,g,g’ € F. Furthermore, 4(f,g) <y/2 implies |e(f,g)| <
d/4. Hence,

dj4

CH2 <D (Z)

k=0

Using the Chernoff bound (see [3])

m )2
Z d P — p)*F < exp _dp=my forall p<1/2and m<dp
purd k 2d p(1 — p)

and letting p = 1/2 and m = d/4 we get

d/4

3 () <2en

k=0

Hence,

S‘;P My (Fdrypy) = My (Fb)

2d
[C (“//Z)W
> et

and this concludes the proof. [J

5. Conclusions

We have given bounds on the /., and L; packing numbers for sets of functions
mapping into a totally bounded metric space. These are based on certain combinatorial
notions of shattering and dimension that generalize earlier related notions, which have
proved useful in establishing strong and uniform laws of large numbers and for in-
vestigating the learnability of function classes in some formal learning models as well
(see e.g. [7,10,12].)

Our results extend to metric spaces previous results shown for the case when Y is
the interval [0,1] and p(u,v) = |u — v|. For sets of real-valued functions, L; packing
number bounds were derived in [7, 8, 12] using Pollard’s notion of pseudo-dimension.
Further bounds, based on the notion of y-shattering (closely related to our notion of
(o, 7)-dimension), were later shown in [1] for the Z,, norm and in [3, 11] for the L,
norm. For a discussion about the relationships between these bounds see [3].
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