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Abstract

We show a natural graph-theoretic generalization of the Sauer–Shelah lemma. This result is
applied to bound the ‘∞ and L1 packing numbers of classes of functions whose range is an
arbitrary, totally bounded metric space. ? 1998 Elsevier Science B.V. All rights reserved.
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1. De�nitions and statement of the main result

Let |S| denote the cardinality of an arbitrary set S. For any n¿ 1, the nth power of
an undirected and irreexive graph G = 〈V; E〉 is the graph Gn = 〈Vn; En〉, where Vn is
the n-fold product of V and {(v1;: : :; vn); (w1;: : :; wn)} ∈ En if and only if {vi; wi} ∈ E for
at least one 16 i6 n. For all A = {i1; : : : ; i‘}⊆{1; : : : ; n} and F ⊆Vn, the projection
of F onto A is F|A = {(vi1 ; : : : ; vi‘) : (v1; : : : ; vn) ∈ F}. A set C ⊆Vn is a cube in
Gn if C = {v1; w1} × · · · × {vn; wn}, where {vi; wi} ∈ E, i = 1; : : : ; n. We say that
〈A; C〉 is a d-dimensional projected cube (d-P-cube) of a set F ⊆Vn if A⊆{1; : : : ; n},
|A| = d ¿ 0, and C ⊆F|A is a cube in Gd. Recall that a set of vertices in a graph
is a clique if any two of them are connected by an edge. Finally, for an undirected,
irreexive graph G, let h(G; n; d) be the smallest nonnegative integer h such that every
clique F in Gn with |F |¿ h contains a (d+ 1)-P-cube.

Theorem 1.1. For any undirected, and irreexive graph G = 〈V; E〉 and any n ¿
d¿ 0;

h(G; n; d)¡ 2(2n|E|)
⌈
log2

∑d

i=0
(ni)|E|i

⌉
:

This result, which is proven in Section 3, goes toward solving an open problem
stated in [9].
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2. Related results and a corollary

The problem of calculating the largest size N (G; n) of a clique in the nth power of
a graph G was �rst proposed, in an information-theoretic context, by Shannon [14]. In
Shannon’s original formulation, one wants to calculate the limit limn→∞ n−1 logN (G; n)
for a given (arbitrary) graph G (see [6] for a survey in this area.) Our motivation is
di�erent from Shannon’s. We are interested in obtaining bounds on packing numbers
for classes of functions that take values in a metric space, like the bounds for packing
numbers of classes of real-valued functions given in [1, 5, 7, 12]. This leads to the
alternate question studied here: what is the size of the largest clique in Gn that does
not contain a (d + 1)-dimensional projected cube. Bounds on this can be obtained
directly from Theorem 1.1. As can be seen, these bounds grow subexponentially in n,
in contrast to the size N (G; n) of the largest (unrestricted) clique.
Special cases of Theorem 1.1, albeit sometimes with better bounds than those given

here, have been obtained before for particular graphs G. Let G = 〈V; E〉 be the complete
graph on V = {v1; v2}. Then it can be shown that h(G; n; d) =

∑d
i=0

(n
i

)
. To see this,

note that every set F ⊆{v1; v2}n is a clique. So, in this case, h(G; n; d)6
∑d

i=0

(n
i

)
reduces to the statement that for every subset F ⊆{v1; v2}n with |F |¿∑d

i=0

(n
i

)
there

is a set A⊆{1; : : : ; n} with |A| = d+1 such that F|A = {v1; v2}d+1, which is the Sauer–
Shelah lemma [13, 15] (independently proven, even if in a slightly weaker form, also
by Vapnik and Chervonenkis [16].) The lower bound h(G; n; d)¿

∑d
i=0

(n
i

)
follows

from an easy and well-known construction, wherein F is taken to be all elements of
{v1; v2}n with at most d occurrences of v1.
Now let G be the complete graph with r¿ 2 vertices. Then

d∑
i=0

(
n
i

)
(r − 1)i6 h(G; n; d)¡

d∑
i=0

(
n
i

)(
r
2

)i
: (1)

This generalization of the Sauer–Shelah lemma was shown in [9].
For r¿ 2 let G = 〈V; E〉 where V = {v1; : : : ; vr} and, for each pair 16 i; j6 r,

{vi; vj} ∈ E if and only if |i − j|¿ 1. The bound

h(G; n; d)¡ 2(nr2)
⌈
log2

∑d

i=1
(ni)ri

⌉
was shown, using a di�erent terminology, in [1, Lemma 3.2].
Finally, for any r¿ 2 and n ¿ d¿ 0, let h(r; n; d) be the maximum of h(G; n; d)

over all graphs G with r vertices. Using the lower bound in (1) above, and the facts
that for n¿d¿ 1, (n=d)d6

(n
d

)
6

∑d
i=0

(n
i

)
6 (en=d)d and

(r
2

)
6 r2=2, we have the

following corollary of Theorem 1.1.

Corollary 2.1. For all r¿ 2 and all n ¿ d¿ 1.(
n(r − 1)
d

)d
6 h(r; n; d)¡ 2(nr2)dd log2(enr

2=2d)e:



N. Cesa-Bianchi, D. Haussler / Discrete Applied Mathematics 86 (1998) 27–35 29

Hence for �xed r and d, the function h(n) = h(r; n; d) is 
(nd) and O(nc log n) for
some positive constant c. We conjecture that the lower bound is the more accurate
approximation. However, we presently know very little about this. It is still open
whether or not h(n) is in fact polynomial in n.

3. Proof of Theorem 1.1

The proof is based on an adaptation of [1, Lemma 3.2]. Fix any undirected and
irreexive graph G = 〈V; E〉. For |E| = 0 or d = 0 the theorem is easily veri�ed.
Hence assume |E|¿ 0 and d ¿ 0. For all integers h¿ 2 and n¿ 1, let t(h; n) denote
the maximum integer t such that every clique F in Gn with |F | = h contains at least
t distinct P-cubes (P-cubes of any dimension d ¿ 0 are allowed.) If for some h and
n no such an F exists, then t(h; n) is in�nite.
Note that for 16 |A|6d the number of P-cubes 〈A; C〉 in F is at most ∑d

i=1

(n
i

)|E|i,
and hence strictly less than y def=

∑d
i=0

(n
i

)|E|i. Thus, if t(h; n)¿y for some h, then
every clique F in Gn of size h has a (d+ 1)-P-cube. Hence h(G; n; d)¡ h.
Let k = |E|. We now show that t(H (n; k; d); n)¿y for all n ¿ d¿ 1, where

H (n; k; d) def= 2(2nk)
⌈
log2

∑d

i=0
(ni)ki

⌉
:

We will use the following properties of the function t:

t(2; m) = 1 for all m¿ 1; (P − 1)
t(h; 1)¿

(
h
2

)
for all h¿ 2; (P − 2)

t(2m · (2nk); n)¿ 2 · t(2m; n− 1) for all n¿ 2 and all m; k¿ 1. (P − 3)
Property (P-1) is readily veri�ed. To show (P-2), �x an arbitrary h¿ 2 and assume,

without loss of generality, there exists a clique F in G with |F | = h. Fix any {f; g}⊆F .
Then {f; g} ∈ E, implying that 〈{1}; {f; g}〉 is a P-cube in G. As this holds for each
choice of {f; g}⊆F , there are at least (h2) P-cubes in G and we conclude t(h; 1)¿ (h

2

)
.

To show (P-3) assume, again without loss of generality, there exists a clique F in
Gn with |F | = 2m · (2nk). Split F arbitrarily into 2m ·nk unordered pairs. For each pair
{v;w} pick a coordinate i such that {vi; wi} ∈ E. Then, the same coordinate i is picked
for at least 2m·k pairs, and for at least 2m of these pairs the set {vi; wi} is the same for
this �xed i. But then F contains two subsets F ′ and F ′′, with |F ′| = |F ′′| = 2m, such
that for each f ′ ∈ F ′, f′

i = vi, and for each f
′′ ∈ F ′′, f′′

i = wi. Let T = {1; : : : ; n} \ i.
As G is irreexive, F ′

|T and F
′′
|T are both cliques in G

n−1. Hence, by de�nition of
the function t, both F ′ and F ′′ contain at least t(2m; n − 1) P-cubes. Also, if for
some A⊆T , F ′ and F ′′ have the same P-cube 〈A; C〉, then F also contains the P-cube
〈A ∪ {i}; C × {vi; wi}〉. This implies that t(2m · (2nk); n)¿ 2 · t(2m; n− 1), concluding
the proof of (P-3).
The proof of the theorem is completed by a simple case analysis. Let r = dlog2 ye

(recall that y =
∑d

i=0

(n
i

)
ki.)
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Case 1: n ¿ r. Let h = 2(2nk)(2(n− 1)k) · · · (2(n− r + 1)k). By applying (P-3) r
times and then using (P-1), we �nd that t(h; n)¿ 2r¿y. As 2(2nk)r¿ h, and since
t is clearly monotone in its �rst argument, we get t (2(2nk)r ; n) ¿ t(h; n)¿y.
Case 2: n6 r. Let h = 2(2nk)r−n+1(2(n − 1)k) · · · (2k). We apply (P-3) n − 1

times and �nd that t(h; n)¿ 2n−1 · t (4k(2nk)r−n; 1). As r− n¿ 0 and k¿ 1, we have

4k(2nk)r−n¿ 4. Applying (P-2), we �nd that t(h; n)¿ 2n−1 · (4k(2nk)r−n

2

)
¿ 2n−14k

(2nk)r−n = 2r2k(nk)r−n¿y · 2k(nk)r−n ¿ y. As 2(2nk)r¿ h, again since t is mono-
tone in its �rst argument it follows that t (2(2nk)r ; n) ¿ t(h; n)¿y.

4. Applications

Theorem 1.1 leads to packing number bounds for families of functions taking values
in arbitrary metric spaces. We �rst recall the de�nition of packing numbers for a metric
space.
A set T ⊆Y is ”-separated in a metric space 〈Y; �〉 if �(y; y′)¿ ” for any distinct

y; y′ ∈ T . The space 〈Y; �〉 is totally bounded if, for all ” ¿ 0, the cardinality of its
largest ”-separated subset, denoted by M”(Y; �), is �nite. The numbers M”(Y; �) are
called packing numbers.
To derive bounds on packing numbers for families of functions mapping into a

metric space, we use generalizations of the notions of shattering and VC dimension
commonly used in the literature on empirical processes. Let F ⊆Y n. For any  ¿ 0
and �¿ 2, we say that F (�; )-shatters a nonempty set {i1; : : : ; id}⊆{1; : : : ; n} if there
exists (v;w) ∈ Y d × Yd such that, �(vj; wj)¿ � for each j = 1; : : : ; d and

(∀y ∈ {v1; w1} × · · · × {vd; wd}) (∃f ∈ F) �(yj; fij)6  for each j = 1; : : : ; d:

Let F be a family of functions f : X → Y , where X is an arbitrary set and 〈Y; �〉 is
a totally bounded metric space. De�ne, for each (x1; : : : ; xn) ∈ X n,

F|(x1 ;:::;xn) = {(f(x1); : : : ; f(xn)) : f ∈ F} :
For any  ¿ 0 and �¿ 2, the (�; )-dimension of F, denoted by DIM�;(F), is de�ned
by

max
{
d : (∃x ∈ X d)F|x (�; )-shatters {1; : : : ; d}

}
:

If for each d ¿ 0 there exists x ∈ X d such that F|x (�; )-shatters {1; : : : ; d}, then
we de�ne DIM�;(F) =∞.
The notion of (�; )-shattering de�ned here generalizes the notion of -shattering

given in [1] (originally introduced by Kearns and Schapire in [10]), which is de�ned
only for the case when Y is a bounded interval on the real line and �(u; v) = |u−v|. In
particular, for this metric space, if x is (4; )-shattered then x is -shattered in the sense
of [1]. This implies that DIM�; is smaller than or equal to the P-dimension de�ned
in [1] for all �¿ 4. As pointed out in [1], the P-dimension is less than or equal to
the pseudo-dimension de�ned by Pollard [12] (see also [7]) for all  ¿ 0.
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Our packing bounds for function classes will depend on a quantity directly related to
the metric structure of 〈Y; �〉. An (�; )-packed graph for 〈Y; �〉 is any undirected and
irreexive graph G = 〈V; E〉 such that: (i) V is a maximal -separated set in 〈Y; �〉,
(ii) {v; v′} ∈ E if and only if �(v; v′) ¿ �, and (iii) ��;(Y; �)

def= |E| is minimized
over all graphs G = 〈V; E〉 satisfying (i) and (ii).
Note that since |V | =M(Y; �), ��;(Y; �)6

(
M(Y; �)

2

)
.

Finally, for any metric space 〈Y; �〉 and any n ¿ 0, we associate with Y n the metric
�n de�ned by �n(u; v) = max16 i6 n �(ui; vi) for all u; v ∈ Y n.

Theorem 4.1. Let F be an arbitrary family of functions f : X → Y; where X is a
set and 〈Y; �〉 is a totally bounded metric space. If DIM�;(F) = d ¡∞; then for all
n ¿ d, for all x ∈ X n; and for all  ¿ 0, �¿ 2;

M(�+2)(F|x; �n)6 2(2nk)
⌈
log2

∑d

i=0
(ni)ki

⌉
;

where k = ��;(Y; �).

The packing numbers M�(F|x; �n) for � ¿ 0 will be called ‘∞ packing numbers for
(restrictions of) F. To get the best bounds on these packing numbers from the above
theorem, one must explore di�erent settings for �¿ 2 and  ¿ 0 such that � = (�+2).
For example, note that for �xed , as � grows, DIM�; can only get smaller, since the
conditions for (�; )-shattering get stricter. Hence the value d in the above theorem
gets smaller as � grows, giving a smaller upper bound. However, to balance out an
increase in �, one must reduce , and by similar reasoning one sees that this has the
e�ect of increasing the bound.
The proof of Theorem 4.1 is based on the following lemma. Recall from Section 3

that

H (n; k; d) = 2(2nk)
⌈
log2

∑d

i=0
(ni)ki

⌉
:

Lemma 4.1. Let F be (�+2)-separated in 〈Y n; �n〉 ; where 〈Y; �〉 is a totally bounded
metric space. If |F | ¿ H

(
n; ��;(Y; �); d

)
; then F (�; )-shatters a set A⊆{1; : : : ; n}

with |A| = d+ 1.

Proof. Choose any (�; )-packed graph G = 〈V; E〉 for 〈Y; �〉 and de�ne a Voronoi tes-
sellation of Y through any mapping � : Y → V satisfying �(y; �(y)) = minv∈V �(y; v)
for each y ∈ Y .
Pick any two distinct f ; g ∈ F and �nd a coordinate i, 16 i6 n, such that

�(fi; gi) ¿ (�+2). Note that, as V is a maximal -separated set, �(fi; �(fi))6  and
�(gi; �(gi))6 . Thus by the triangle inequality �(�(fi); �(gi))¿ �, implying {�(fi);
�(gi)} ∈ E. Hence �(F)⊆Vn, de�ned by

�(F) = {(�(f1); : : : ; �(fn)) : f ∈ F} ;
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has cardinality |�(F)| ¿ H
(
n; ��;(Y; �); d

)
and is a clique in Gn. Therefore, since

|E| = ��;(Y; �) by de�nition of G, by Theorem 1.1 there exists a set A = {i1; : : : ; id+1}
such that a subset C = {vi1 ; wi1} × · · · × {vid+1 ; wid+1} of �(F)|A is a cube in Gd+1.
Since C is a cube in Gd+1, {vij ; wij} is an edge in G for all 16 j6d+ 1. Hence,

�(vij ; wij)¿ �, j = 1; : : : ; d+1. Choose any y ∈ C. Find f ∈ F such that �(fij) = yij
for j = 1; : : : ; d+1. As V is a maximal -separated set in (Y; �), we have �(fij ; yij)6 
for j = 1; : : : ; d+ 1. Hence A is (�; )-shattered by F .

Proof of Theorem 4.1. By contradiction. Choose x ∈ X n and let F =F|x be (�+2)-
separated in 〈Y n; �n〉 with |F |¿ H (n; k; d). By Lemma 4.1, there exists A⊆{1; : : : ; n}
with |A| = d + 1 that is (�; )-shattered by F|x. This contradicts the assumption that
DIM�;(F) = d.

Now let F be a family of functions from a set X into a metric space (Y; �) as
above and let P be a probability distribution on X . De�ne the distance dL1(P) on F by
dL1(P)(f; g) =

∫
�(f(x); g(x))dP(x). Using a trick from [4], we can apply Theorem 4.1

to bound the quantity M�(F; dL1(P)) as well, which we refer to as the L1 packing
numbers for F.
The diameter of a totally bounded metric space (Y; �) is supy;y′∈Y �(y; y

′): Note
that from the triangle inequality, the diameter is at most ” times the size of its largest
”-separated subset plus 1, for any ” ¿ 0.

Theorem 4.2. Let F be an arbitrary family of functions f : X → Y; where X is a set
and 〈Y; �〉 is a totally bounded metric space with diameter R. If DIM�;(F) = d ¡∞;
then there exists a constant c ¿ 0 such that for all  ¿ 0 and for all �¿ 2;

sup
P

M2(�+2)(F; dL1(P))6

⌈(
kdR


)cd ln(kdR=)⌉
; (2)

where k = ��;(Y; �) and the supremum is taken over all probability distributions P
on X .

This is complemented by the following result by Bartlett et al. (for completeness, we
repeat their proof using our terminology) showing that any function class of high (4; )-
dimension must include a large set that is (=2)-separated in the sense of Theorem 4.2.

Theorem 4.3 (Bartlett et al. [3]). Let F be a family of functions f : X → Y; where
X is a set and (Y; �) is a metric space. Then for any  ¿ 0

sup
P

M=2(F; dL1(P))¿
⌈
ed=8

⌉
;

where d = DIM4;(F).

To prove Theorem 4.2 we use a “probabilistic method” that goes back to Dudley [4]
(Dudley’s trick also inspired Bartlett et al. in [3].) The basic tool in our proof is the
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following Cherno�–type bound (proven in [2] in a slightly less general form) on the
sum of independent random variables with bounded range.

Lemma 4.2. Let �1; : : : ; �n be a sequence of mutually independent random variables
such that 06 �i6M , M ¡∞; and E[�i] = �, i = 1; : : : ; n. Then, for all �¿ 0;

Pr

{
n∑
i=1

�i6 (1− �)�n
}
6 e−�

2�n=(2M):

Proof of Theorem 4.2. Let P be a distribution on X and let G⊆F be any maximal
set which is 2(� + 2)-separated with respect to dL1(P). As 〈Y; �〉 is totally bounded,
we have supx∈X �(f(x); g(x))6R, where 0 ¡ R ¡ ∞ is the diameter of 〈Y; �〉. Let
x1; : : : ; xn be mutually independent random draws from P. For each {f; g}⊆G we apply
Lemma 4.2, with � = 1=2, to the random variables �i = �(f(xi); g(xi)). Noting that
E[�i]¿ 2(�+ 2), we get

Pn
{

min
{f;g}⊆G

1
n

n∑
i=1

�(f(xi); g(xi))6 (�+ 2)

}
6

(|G|
2

)
exp

(
− (�+ 2)n

4R

)
: (3)

Therefore, for n ¿ (4R=(�+ 2)) ln
(|G|
2

)
we can �nd x = (x1; : : : ; xn) ∈ X n such that

for any {f ; g}⊆G it holds that n−1
∑n

i=1 �(fi; gi) ¿ (� + 2). This clearly implies
that, for this x, G|x is (�+ 2)-separated in 〈Y n; �n〉.
Let N = |G| = |G|x| and assume (i) n ¿ (4R=(�+ 2)) ln

(N
2

)
and (ii) N ¿

H (n; k; d) both hold, where k = ��;(Y; �). Then, using Lemma 4.1, we conclude that
G|x (�; )-shatters a set of cardinality d+ 1, contradicting DIM�;(G)6 DIM�;(F) = d.
As (i) is implied by n¿ (2R=) lnN , for (i) and (ii) to hold it is su�cient that

H (n; k; d)¡ N6 en·=(2R): (4)

Using 2d log
2
2(enk)+1 to upper bound H (n; k; d) — see discussion before Corollary 2.1, a

positive constant c can be found such that n¿ (2R=)cd ln2(kdR=) implies en·=(2R) ¿
H (dne; k; d) for all k¿ 1 and all d¿ 1. Hence, for each integer N¿ ecd ln

2(kdR=) some
integer n¿ (2R=)cd ln2(kdR=) can be found such that (4) holds, leading to a con-
tradiction. It follows that

|G| = N ¡
⌈
ecd ln

2(kdR=)
⌉
:

Since G was an arbitrary maximal 2(� + 2)-separated subset of F with respect to
dL1(P), the result follows.

Proof of Theorem 4.3. Choose F and choose  ¿ 0. Let d = DIM4;(F). Let x ∈ X d
be a sequence that is (4; )-shattered by some F ⊆F|x of cardinality 2d. Let C(=2)
be the minimum integer c such that

| {g ∈ F : ‘1(f ; g)6 =2} |6 c for all f ∈ F ;
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where we de�ne ‘1( f ; g) = d−1
∑d

i=1 �(fi; gi). For any two f ; g ∈ F let

e( f ; g) = {i : 16 i6d; �(fi; gi)¿ 2} :

Note that, by de�nition of (4; )-shattering and by our choice of F , e( f ; g)=e( f ; g′) if
and only if g=g′ for any f ; g; g′ ∈ F . Furthermore, ‘1( f ; g)6=2 implies |e( f ; g)|6
d=4. Hence,

C(=2)6
d=4∑
k=0

(
d
k

)
:

Using the Cherno� bound (see [3])

m∑
k=0

(
d
k

)
pk(1− p)d−k6 exp

{
− (dp− m)2
2dp(1− p)

}
for all p6 1=2 and m6dp

and letting p = 1=2 and m = d=4 we get

d=4∑
k=0

(
d
k

)
6 2de−d=8:

Hence,

sup
P

M=2
(
F; dL1(P)

)
¿ M=2 (F ; ‘1)

¿
⌈

2d

C(=2)

⌉
¿

⌈
ed=8

⌉
and this concludes the proof.

5. Conclusions

We have given bounds on the ‘∞ and L1 packing numbers for sets of functions
mapping into a totally bounded metric space. These are based on certain combinatorial
notions of shattering and dimension that generalize earlier related notions, which have
proved useful in establishing strong and uniform laws of large numbers and for in-
vestigating the learnability of function classes in some formal learning models as well
(see e.g. [7, 10, 12].)
Our results extend to metric spaces previous results shown for the case when Y is

the interval [0; 1] and �(u; v) = |u − v|. For sets of real-valued functions, L1 packing
number bounds were derived in [7, 8, 12] using Pollard’s notion of pseudo-dimension.
Further bounds, based on the notion of -shattering (closely related to our notion of
(�; )-dimension), were later shown in [1] for the ‘∞ norm and in [3, 11] for the L1
norm. For a discussion about the relationships between these bounds see [3].
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