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Abstract. We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to
predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic)
loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal
code. Using Shtarkov’s theorem and tools from empirical process theory, we prove a general upper bound on the
best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors. We
apply the bound to both parametric and nonparametric classes of predictors. Finally, we point out a suboptimal
behavior of the popular Bayesian weighted average algorithm.
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1. Introduction

Assume that elements of an arbitrary sequence. ., y, are revealed one by one, where

the elementsg; belong to some sét, which, in the simplest case, is assumed to be finite. At
eachtimd =1, ..., n, before revealing an elemeyt we are asked to assign a probability
mass functiorp; on ) and then observg incurring the logarithmic loss-In p;(y;). Our

total loss at the end is the sum of the losses suffered at each round. As we know the prefix
Vi, ..., Yi—1 before choosing each probability assignmpntwe may view eaclp; as the
conditionalp(- | vi, ..., Yt—1) of some joint distributiorp that we choose before the game
begins. We calp aprediction strategy Any strategy for playing this game is equivalent to

a probability distribution o))",

Our goal is to predict (almost) as well as the best strategy in a given “reference” set of
strategies. We will call “experts” the strategies in the reference set. In other words, we
intend to accumulate a loss not much larger than that of the best expert, regardless of what
the sequencygy, ..., y, might be.

In this paper we investigate the minimum excess loss, with respect to the total loss of the
best expert, achievable on any sequence. This quantity, known as minimax regret (under
logarithmic loss), will turn out to depend on certain metric properties of the ¢tasé
experts.
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Itis well-known, via arithmetic coding (Rissanen, 1976), that every sequential prediction
strategy may be converted into a sequential lossless source code. Conversely, every uniquely
decodable code ove¥" defines a probability distribution. Thus, the prediction problem
under logarithmic loss is formally equivalent to the problem of sequential universal coding
in data compression. In this context, the subject of our study is the smallest achievable
worst-case redundancy of a sequential lossless code, with respect to a general class of
reference codes. The study of the worst-case regret was pioneered by Shtarkov (1987), and
later studied from various points of view by De Sardtsal. (1988), Vovk (1990, 1998),
Haussler and Barron (1993), Weinberger, Merhav and Feder (1994), Yamanishi (1995),
Rissanen (1996), Haussler, Kivinen and Warmuth (1998), and others. Merhav and Feder
summarize the relevant history in their recent survey (Merhav & Feder, 1998).

The notion of minimax regret has natural applications in gambling and portfolio selection.
This connection was explored by Cover (1991), Feder (1991), Cover and Ordentlich (1996),
Barron and Xie (1996), and others.

Definitions. Let) be a measurable set equipped with-algebra4 ando -finite measure
w. Letn be any fixed positive integer denoting the length of the sequence or, equivalently,
the number of game rounds. LE&Y", A, v) denote the probability space obtained as the
n-fold product of{), A, 1). Throughout the paper, all densities@and)" are understood
with respect to the measurgsandv, respectively. Moreover, all integrals are computed
over the sef)" unless explicitly specified. (I} is a countable set, them is usually the
counting measure, and all densities are understood as probabilities.)

For any integett >0, we usey' to denote a sequence bfelements frony (where
yY is the empty sequence). In this contextpradiction strategyis a densityp on Y".
Upon observing the prefix'—1, the strategyp uses the conditional densipy(- | y=1) as a
probability assignment for the next elemegnbf the sequence.

Fix a classF of “reference” strategies, called hezgperts Theworst-case regreof a
strategyp (with respect to the clasg) is defined by

n 1 n 1
Rn(p, F) = su INn—— — inf n——
P yneypn (t; pCye Y1) feft; fyl y”))

or, equivalently, in terms of the joint densities
sup: f(y™
Py
In other words,R,(p, F) is the worst-case difference between the log-likelihood/of
under the density and the log-likelihood ofy" under its maximum likelihood estimator

(MLE) in the classF. The smallest worst-case regret achievable by any predictor is the
minimax regret

R.(p, ) = suplin
yn

sup: f(y")

F) =infsupl
=

where the infimum is taken over all densitip®n )".
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The main contribution of this paper is a general upper bound on the minimax Rygsét
in terms of some metric structure of the expert classn previous works, Rissanen (1996)
obtained asymptotical upper bounds for general parametric classes, which was generalized
considerably by Yamanishi (1998). Opper and Haussler (1997) were the first to prove
upper bounds for nonparametric classes. However, their bounds are restricted to classes of
staticexperts, that is, experts which correspond to product distributions. Our main result,
Theorem 3 below, extends both results in different ways: (1) in the parametric case we are
able to obtain nonasymptotical bounds under much simpler conditions than those needed
by Rissanen; (2) in the nonparametric case our results extend those of Opper and Haussler
to classes of arbitrary, not just static, experts.

The rest of the paper is organized as follows: In Section 2 we review Shtarkov’s optimal
prediction strategyp*, whose regreR,(p*, F) is always equal to the minimax regret
R.(F). In Section 3 we establish our main result: a general upper bound on the minimax
regret for any class of experts. In Section 4 we apply our upper bound in concrete situations,
which could not be handled by any of the previous methods. Finally, in Section 5 we point
out that for certain classes of experts, prediction strategies based on mixture of experts may
have a regret which is significantly larger than that of Shtarkov’s optimal predictor.

2. Shtarkov’s theorem, mixture strategies

Shtarkov proved the remarkable fact that the density corresponding to the normalized MLE
achieves the minimax regret for any class of experts.

Proposition 1 (Shtarkov, 1987) For any classF of expertsthe densitynormalized MLE

supr f(y")
S supz f(x™) dv(xM)

is a minimax strategythat is,

pr(y") =

Ra(p*, F) = Ra(F).
Moreover p* is an equalizer. That jdor all y" € )"

o SuRs T _

oY) /S;_Jph’] f(xM dv(x") = R(F). Q)

Note that the equalizer property (1) implies that the minimax regret may be expressed as

f(y”)> ‘ouh n
F) = | dv(y"). 2
Rn(F) f(sgpnp*(yn) p*(y") dv(y") (2)

The above expression is at the basis of the proof of the main result of this paper, see
Theorem 3 below.

Even though by Shtarkov's theorem we may explicitly compute the minimax optimal
predictor, its practical use is limited by the hardness of computing each conditional
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p*(y|yH. The most common way to define more easily computable prediction strate-
gies is to consider mixture strategies of the form

p(y") = f@ f,(y" dw(6),

where® is a set of parameters by which the experts are parametiiZed{f, : 6 € ®},
andw is a probability measure ovér. For an exhaustive survey of related results, we again
refer to Merhav and Feder (1998).

A simple example of a mixture strategy is whénis a finite class and is the uniform
distribution overF. In this case, the conditionals of the mixture strategy take the simple
form

Yo FylyhH iyt

3
Zgg]—" g(ytil) ( )

plyly'™) =

This is just the weighted average (WA) algorithm of De Santis, Markowski and
Wegman (1998), see also Haussler and Barron (1993), Haussler, Kivinen and Warmuth
(1998), Vovk (1998), and Yamanishi (1995).

Besides being computationally easier to handle fiiamixture strategies are (in general)
universal thatis, their conditionals can be computed without knowing the sequence fength
in advance. On the other hand, there are simple finite cl&&seswvhich mixture strategies
perform very poorly compared to the optimal predictor. We will discuss this further in
Section 5.

We close this section by recalling the simple and elegant analysis of the regret of the WA
strategy. This result will be used in Section 3.

Proposition 2 (De Santis, Markowski & Wegman, 1988) For the WA strategy p and for
any finite classF of experts

Ri(p, F)<In|F|.

Proof: LetW; = |F|,andW; = Y ;. f(y'™1),t > 2. Then, on the one hand,

W
Ve In(Z fy" )) —In 7] = In maxf(y" —In | 7],

feF

and the other hand,

Wn+1 . Wt+1 : rer FOYH
Z' Z'me(ytl)

= Z Inp(ye |y = In py".
t=1
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Thus, we obtain

maxer f(y")

<In|F]|. O
py™ =iz

Ra(p, F) < supln
yn

3. Main result
We start with some definitions. The diameter of a totally bounded metric $Sape is

sup p(X, y).

X,yeS

LetT € S. Then for any > 0, thee-covering numbeN, (T, ¢) of T is the cardinality of
the smallest subs@t’ C Ssuch that

VxeT)@X eT) px, x) <s.

To any classF of experts, we associate the metlidefined by

d(f,g) = J > sup(In oy [ yh) = Ing(y | y=)°. “)
t=1 Y

We useN (F, ¢) to denote the-covering number ofF under the metrid.

Theorem 3. For any classF of experts

Rn(F) < im;(ln N(F, s)+24/€‘/ln N(]—",S)dS).
£> 0

Remark The main Theorem in Opper and Haussler (1997) has a similar form. In partic-
ular, they showed that if every expefitin the classF has the special fornf (y; | y*=1) =

f'(yt) (i.e., every expertf corresponds to the product ofidentical distributionsf’ on
Y—uwe call such expertstatic), then for some constai,

R.(F) < im(‘)(ln N, (F,¢) + K /E,/In N, (F,8)ds + n32> (5)
£> 0

wherep is a metric onF. With Theorem 3 above, we show that in the upper bound (5)
the termne? is unnecessary. We also show that the metrizan be replaced by another
metric d, defined in (4), which satisfieBlg(F, §) < N,(F,§) for anys > 0 and any
classF of static experts. (Note that the relative weakness of the bound (5) did not prevent
Opper and Haussler from obtaining upper bounds of the right order in their applications.)
Most importantly, however, we extend the result of Opper and Haussler (1997) to classes
of arbitrary, not just product experts. Our proof of Theorem 3 shows some similarities with
that of Opper and Haussler, in that we also use techniques from empirical process theory.
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Nevertheless, their proof does not seem to be extendable to handle the general case treated
here.

Remark Theorem 3 requires that the expert class be finitely coverable in the rdetric
This in turn requires that all conditional densities be bounded away from zero. It is unclear
whether such a condition is necessary in general. Infact, for certain special parametric cases
like the family of all i.i.d. measures over a finite alphabet, such boundedness conditions are
not needed (see the remark after Corollary 6 for further discussion).

In order to prove the theorem, first we recall some well-known notions from empirical
process theory. A family

(T @ ferF)

of zero mean random variables (indexed by a metric spéce)) is calledsubgaussiaim
the metrico whenever

E[e/TT] < @ ’r(f.97%/2

holds for anyf, g € 7 andA > 0. We also assume that the familysample continuoys
thatis, for any sequench, f,, ... € F converging to somé € F, we havely, — Ty — 0
almost surely.

The main tool used in our proofs is the following result of empirical process theory,
stating that the expected supremum over a subgaussian family is governed by geometrical
properties of the family in an appropriate metric. The result is a simple version of Dudley’s
classical metric entropy bound (see, e.g., Talagrand, 1996), whose proof is given in the
Appendix for completeness. Note that we ignore measurability issues here, by implicitly
assuming the measurability for all suprema.

Proposition4. If {T;: f € F}is subgaussian and sample continuous in the metribhen

D/2

E [supr] <12 VIn N, (F, e)de
F 0

where D is the diameter oF.

We use Proposition 4 to obtain a first (weak) boundRaiF) based on a direct analysis
of Sharkov’s strategy*. This will be later used as a tool to prove the stronger bound of
Theorem 3, which is based on the analysis of a variaqt*of

Lemma5. For any classF of experts

D/2
R.(F) <24 vIn N(F, e)de
0

where D is the diameter of.
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Proof: Using (2), we write
f n
Rn(F)=f<sur)ln *(yn))p*(y”)dv(y”)
F y

)
B n
= E| suplIn ) ]
L7 pr(Y")
(whereY" = (Y1, ..., Yy) is a vector of random variables distributed
according top*)

LYY 1)}
= E| sup "
t; pr(Ye | Y1)

"R YY) FOV YY)
E — _E|lIn———————2|Y*
= _Sﬁp;< AN [ MY

)

where the last step follows from the nonnegativity of the Kullback-Leibler divergence of
the conditional densities (see, e.g., Cover and Thomas (1991)):

* t—1 __ -1
[ ZOIY=Y T
f(Yp | Y-t =yt

(6)

Now, for eachf € F let

1 fy ]yt AN A
T(y") == nh——< -~ _E|In————~|Y*"
=3 ;( YD [ " IYED

)
so that we havdR,(F) < 2E[sup, T:].

To apply Proposition 4, we need to show thigt: f € F}isindeed a subgaussian family
under the metrid. (Sample continuity of the process is obvious.) To this end, note that
forany f, g € F,

Ty — To(y"™) = Y Z(yH,
t=1

where

o1 forlyt™h FO YTt =y
A= 2('” gyt |yt 1) Bl g(Y; | Y=yt | )

Now it is easy to see thalk — Ty = T;(y") — Tg(y") is a sum of bounded martingale
differences, thatis, each terfia has zero conditional mean and range boundedipyf2g).
Then the Hoeffding-Azuma inequality (1967) implies that, fonal+ 0,

o012 0 Sac)
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Thus, the family{T; : f € F} is indeed subgaussian. Hence, recalling tRatF) <
2E[sup; T;] and applying Proposition 4 we obtain the statement of the lemma. O

Lemma 5 provides a sharp bound on the regrgt‘df the diameteD of F is very small.
However, inequality (6) becomes very loose for expdrtar away fromp*. To avoid
such situations, we prove our general bound by analyzing the following prediction strategy
(different from p*): F is partitioned into small subclasses and the minimax predictor is
calculated for each subclass (in which Lemma 5 may be applied). Finally, these predictors
are combined using the WA algorithm.

Proof. (Theorem 3) Fix an arbitrary > 0 and letG be ane-covering of 7 of minimum

sizeN = N(F, ¢). Let Fq, ..., Fn be the cells of the Voronoi tessellation8f under the
metricd, having the elements ¢f as cell centers (remember ttf&tandg live in the same
metric space, buf does not have to be a subset®f. ThenFy, ..., Fn is a partition of
F.Foreach =1,..., N, letg® be Shtarkov’s optimal predictor foF;,

supx f(y™
[ sups f(xMdv(xn)’

gV y" =

Now let the predictomp, be the WA algorithm defined in (3) run over the set of “experts”
g®,...,g™. Clearly, R\(F) < inf.q Ry(p:, F). So all we have to do is to bound the
regret ofp,.

To this end, fix any" € )" and letk = k(y") be such that

In supf(y™) =Insupfy").
F Fk

Then,
n (K) (yn fy"
nSues fon _gfon | Supik " @
P:(Y") P (Y™ gl ym
Ask = k(y™) rangesin1, ..., N}, by Proposition 2 we get
(K) (yn
supln g ) <In N. (8)
y" p: (Y")
Furthermore
sup- f(y" sup: f(y"
supln P 10 < maxsupln pf'—(y) = max R,(F). 9)

% gl(y") T 1=i=N yn g®(ym 1<i<N
Hence, combining (7), (8), and (9) we get

Ra(ps, F) < 'nN’Lﬂ% Ra(F) . (10)
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Now note that the diameter of each element of the parti#tan. .., 7y is at most 2.
Hence, applying Lemma 5 to eaéh in (10) we find that

R.(p:, F) < InN + max24/ VINN(F, 8)ds
0

A

1<i<N

INN(F, &) + 24/5 VINN(F, §)ds
0

concluding the proof. O

IA

Remark Similarly to an analogous derivation in Opper and Haussler (1997), Theorem 3
could be also proven by direct manipulation of the minimax regret in the form

In/supf(y”)dv(y”).
F

This is done by partitioning as in the proof of Theorem 3 and then replacing the derivation
of the bound (10) with the following:

Ra(F) = In/sgpf(y“)dv(y”)

N
< In/ (Zsupf(y”)) dv(y"

i=1 i

<InN + max In/supf(y”)dv(y“)
1<i<N F

=InN+ maﬁ In Ry (F).

1<i<

Though a bit more concise, this proof ignores the algorithmical meaning of the right-hand
side of (10).

Remark It is interesting to note that, while strategies lige can have a regret close to
the optimal valueR,(F), p* is theuniquestrategy with regret equal t&,(F), and this
is precisely due to the fact that* is an equalizer. To show this, pick atfy and as-
sume there existp’ such thatp’ # p* and yetR,(p’, ) = Ry(p*, F) = Ry(F). As pis
normalizedp’ # p*impliesthatp(y™) < p*(y") forsomey". Hence, sup f (y")/p'(y") >
sup- f(y")/p*(y" for this y". But (2) implies that sup f (y")/p*(y") = Rn(F) for
any y". Hence sup f(y")/p' (y") > R.(F) contradicting the assumptioR,(p’, F) =
Ra (F).

4. Applications

In this Section we illustrate some natural applications of our upper bounds that, to the best
of our knowledge, could not be obtained with previous techniques.
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4.1. Parametric classes

As a first example, consider classEsuch that there exist positive constak&ndc such
that for alle > 0O,

INN(F, e) <kln Cgﬂ (11)

This is the case for most “parametric” classes, that is, classes which can be parametrized
by a bounded subset @& in some “smooth” way. Asymptotic expressions f&(F)

were established by Rissanen (1996) for such classes under certain general conditions.
In particular, Rissanen showed under his conditions Ryt¥) ~ (k/2) Inn. However,

these conditions are difficult to check in some situations, and they are asymptotic in na-
ture. Theorem 3 allows us to derive a simple honasymptotic bound under the sole metric
condition (11).

Corollary 6. Assume that the covering numbers of the clasatisfy(11). Then for each
n so large that

cv/n > 48V2,/In(cy/n) /K,

we have

R,(F) < If|nn+—| '”(w—)

+ klInc + 6k.

Proof: Substituting (11) in the upper bound of Theorem 3, the first term of the expression
is bounded b)Jg Inn+k Inc —k Ine. Then the second term may be bounded as follows:

24f ,/InN(]-"ch5<480~/_/ x2e~*"

(by substitutingk = ,/In (cy/n/8) and writing
= /In(cv/n/e))

1 © e
— 48cvkn —X
% |:2 «/—/8 / ¢ dX]
(by integrating by parts)

1
48CJ_[ZCI n/e 2anC«/ﬁ/8]
(by using the gaussian tail estimgﬁ%’ eX*dx
<et/@)
< 48Vkae (whenevees < c/n)

< 48V2¢,/kiIn(cy/n)  (Whenever > 1/(cy/n))
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The obtained upper bound is minimized for

~ 48/2\ In(cyn)’

which yields the desired result. O

Remark The mainternik/2) Innisknown to be the best possible for mksdimensional
parametric families such as the family of all i.i.d. measures over a finite alplvadifet + 1
elements [15], or, ik = 2™, for the family of allm-th order stationary Markov measures

over a binary alphabet [19]. The lower-order term in the Corollary above is however not
the best possible in some cases, when much sharper estimates are available see, e.g., Barron
and Xie (1996) and Freund (1996). In fact, typical specific upperx bounds, have the form
(k/2)Inn + O(1) (see Barron & Xie, 1996; Freund, 1996; Rissanen, 1996). We do not
know if, in the generality treated here, the seca@¢k In Inn) term is necessary. Also,
Corollary 6 may only be used if all conditional densities are bounded away from zero. For
example, in the case of the examples mentioned above, we need to restrict the range of the
parameters so that all probabilities become bounded away from zero. Such condition is
not necessary in some of the parametric examples mentioned above. For example, Barron
and Xie (1996) and Freund (1996) do not need any restriction Wwhénthe class of all

i.i.d. measures over a finite alphaldetof k + 1 elements. Note, however, that to obtain

his general parametric bound, Rissanen assumes that the Fisher information is uniformly
bounded away from zero, which, in specific cases, leads to a similar restriction of the class
as the one we implicitly need by assuming (11). On the other hand, the general condition
under which the Corollary holds makes it useful in situations where all previously known
techniques fail. This is illustrated in the next simple example.

Example: Fading-memory predictorsLet ) = {0, 1}, and consider the one-parameter
classF of distributions on{0, 1}" containing all expertf @ with a € [0, 1], where each
f @ is defined by its conditionals af,® (1) = 1/2, £, (1| y1) = y1, and

a _ 1 &S ai —t)

ROy == ;yi(n ﬁ>
forall y'=t € {0, 1}*"* and for allt > 2. In other words, each expert predicts according to a
weighted average of the past outcomes with linearly decaying weights as we go back in the
past. The parametardetermines the slope of the decay. Unfortunately, Theorem 3 cannot
handle this class because the valued8t(1] y*~1) and f,? (0| y*~1) may be arbitrarily
close to zero, and therefore the covering numbers of this class with respect to thedmetric
are infinite. To avoid this difficulty, we slightly modify the experts by considering the class
G of all expertsg of the form

g @y =t (F¥ayh),



258 N. CESA-BIANCHI AND G. LUGOSI

where
X if x e [8,1— 4]
T(x) = {3¢ if x <§
1-6§ ifx>1-9§

for some fixed O< § < 1/2. Now clearly, for alt > 1, anda, b € [0, 1],

dt(g(a)’ g(b)) — max | In g(a) (1| yt l) In gsb)(j_' y'[fl)|

yt 16{01' 1

1 _
< 2@y — g @y

b yt= 1e 011 1

1

(@ t—1 (b) t—1

<5 omax [T - Ay

1 1 2 @-ba-1
= ma

8ytle01}t1t—1|21:y' t—2

1 —1 @i —t)
=—- max |(@a—-b

b yt-1e{0,1jt-1 ) Zl

1 -1
<- max |a—Db
T 8 ytlefo, 1t | 21

la — bj
< .
- 1)

Therefore, we immediately see that foralt 0,

INN(@G,¢) < In @
&d

so Corollary 6 yields

J/n 1

3 +1In 5 +6.

Note that this class cannot be handled by Rissanen’s asymptotic expansion, which requires
that the MLE in the class satisfy a uniform central limit theorem condition. In fact, the
experts inG are nonstationary, and reach far back in the past, so proving a central limit
theorem for the MLE of would be extremely difficult (let alone a uniform one!), even if
we had known what the MLE was.

R (G) < = Inn+ 1InIn

4.2. Nonparametric classes

Next, we illustrate on two examples how Theorem 3 can be applied for very large, nonpara-
metric classes. The first example shows that nontrivial bounds may be obtained even for
utterly huge classes of predictors.
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Example: Lipschitz-Markov predictors.Assume, for simplicity, that the alphabet)s=
[0, 1]. LetC be a class of densities (with respect to the Lebesgue measure) rs[&h
that its covering numbeN, (C, ¢) with respect to the metric

p(p, P)= sup | Inp(x)— Inp'(x)]
x€[0,1]

satisfies I\, (C, ) < ce~2 for somea, c> 0. (An example of a nonparametric class of
densities satisfying this condition is the class of all Lipschitz densities which are uniformly
bounded away from zero, a class also considered in Opper and Haussler (1997).)

Now consider the class of all k-th order Markov measures on,[D]" such that for all
t <nand

ViE = (Yeeko -5 Yeo1) € [0, 1]%,
the conditional densities satisfy(- | y{ ) € C, and moreover, foratl< nandy, "}, z ¢ €
[0, 1%,

t—1 t—1
Sup [ fi(x [Yim) —In f(x 250 = max 1% =)

The last condition requires that a small change in the past does not cause a drastic change
in the log of the conditional density. Notice that all these are quite natural smoothness
assumptions, and the resulting class of experts is very large.

To use Theorem 3 it suffices to observe that(e) may easily be bounded by

N£(e) < [Ne(e/2)]vm/o"
wherec; is a positive constant. Now it is a matter of routine calculation to obtain the bound
Ra(F) = O(n75%).

Example: Monotone predictors.Let ) = {0, 1} be a binary alphabet, and consider the
classF of all expertsf =[], f; such thatf (1| yrhH = (1) € [8,1 — 8], wheres €
(0,1/2) is some fixed constant, and for eack2,3,...,n, f;(1) > f;_1(1). In other
words, F contains allstatic experts (i.e., experts which predict independently of the past
data) which assign a probability to the outcome “1” in a monotonically increasing manner.
This class is again “nonparametric”, but here the richness of the class is not due to the
richness of the conditional densities, but rather to the nonstationarity of the expg&tts in
To estimate the covering number®f consider the finite subclagsof F containing only
those monotone expergs= [ ], g; which take values of the form (1) =8 + (i /k) (1 —25),

i =0,...,k, wherek is a positive integer to be specified later. It is easy to see that
1G] = ("%) < (2n)*if k < n, and|G| < 2 otherwise. On the other hand, for afiye F,
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if g is the expert irg which is closest tdf, then for each < n,

1
yrer}% | In fi(y) —Inge(y) | < EJQ% | fe(y) — (W) |

1

5| fi(D) — a(D |
1

&.

=

Thus,d(f, g) < «/n/(8k), where the metrid is defined in (4). By taking = ./n/(Se), it
follows that the covering number ¢f is bounded as

@n)vee jf g > L

N(F, &) < ov/n
(F.e) = 2V/Ge) otherwise.

Substituting this bound into Theorem 3, itis a matter of straightforward calculation to obtain
Ra(F) = O(n*357%/3 In?*n).

Note that the radius optimizing the bound of Theorem 3 is abeumn/65—1/3 |n/3n,

5. Suboptimality of mixture predictors

As we have pointed it out in the introduction, instead of the minimax predictor given by
Proposition 1, often mixture predictors are used. In some cases, the worst-case regret of mix-
ture predictors, in particular, the WA predictor (3), is very close to the optimal \RJU€),

see Barron and Xie (1996), Freund (1996), and Haussler, Kivinen and Warmuth (1998).
The purpose of this section is to point out that this is not necessarily so. In fact, even for
very simple classes of static experts, the ratio of the minimax regret of the WA algorithm
and that of the optimal algorithm can be arbitrarily large. Note that this does not contradict
Theorem 3, where the WA algorithm was run on a special set of predictors derivedfrom
instead of being run directly on the expert clé@Ssas prescribed by (3).

Theorem 7. For every n> 1 there exists a clas§, of two static experts such that p
denotes the predictor defined(8), then

Rn(pv -7:n)
Ry =M

where c is a universal constant.

Proof: Let F, contain the two expert$, g defined over the binary alphab¥t= {0, 1}
by
1

1 1
f(L|y™ = > and gLy = 5+ o
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forallt <nandy'~! € {0, 1}*~1. We may easily estimate the minimax regRat.F,,) using

Lemma 5. The diameter ¢f, is easily seen to be
1 1
D =d(f =Jnhn(l1+-)<—.
(f,g)=+n < + n) <
Also, sinceN(Fy, €) <2 for alle > 0, Lemma 5 provides the upper bound
12)

12/In2
Rn(Fn) < .
J/n
On the other hand, the definition of the WA algorithm in (3) shows that

n f n+ n
oy — (y)zg(y).

The relative loss op is
max(f (y"), g(y")
) fn = |
Rn(p, Fn) =1In "}«;:IX D(y")
2max f(y"), g(y")
f(ym + gy
> In max 21"
' fy™) +g(y™

=
yH
2—n

=1n oer%Z -n 1 1 k1 1\n—k

sk=n 24+ (53— 5) G+ )

2

= In max

S (- ) e )

2
—
1+(1-7)

=In

>1In .
1+2
|

Comparing this lower bound with (12), we obtain the statement of the theorem with

c=1In (Fﬂ)/lzx/ln 2 ~ 0.038.

Appendix
To prove Proposition 4, we use the following simple lemma, whose elegant proof was shown

to one of us by Pascal Massart.
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Lemma8. Leto > 0, andlet X, ..., Xy be real-valued random variables such that for
all x> 0andl<i < N, E[e*X] < &2, Then

E[m%xxi] <o+2InN.
=
Proof: By Jensen’s inequality, for all > 0,
grElmaxi<n Xi]l _ E[e" max <n Xi] — E[maxe’\xi:|
i<N

N
< Y E[e%] < N&2,
i=1

Thus,
INN  Ac?
E| maxX [<— 4+ —,
i< 2
and takingh = /2 In N /o2 yields the result. O
Proof: (Proposition 4 Foreactk=0, 1, 2, ..., let 7® be a minimal cover of- of radius

D2, Note that F®| = N(F, D27¥). Denote the unique element 8% by f.

Let Q be the common domain where the r.\is f € F, are defined. Pick € Q and
let f* e F be such that sup » T; (w) = Ti«(w). (Here we implicitly assume that such an
element exists. The modification of the proof for the general case is straightforward.)

For eachk > 0, let f denote an element of® whose distance td* is minimal.
Clearly,p(f*, f7) < D2k, and therefore, by the triangle inequality, for e&ch 1,

p(Fe g, B <p(F5, £ + p(f%, £ ) <3D27% (13)

Clearly, lim.« f = f*, and so by the sample continuity of the process,
SUpTi (@) = Ti-(@) = Ty(@) + Y _ (T (@) — Tyz (@),
f k=1

and therefore
o0

E[S?pri| <> E[ max(T; — Tg)}

k=1

where the max is taken over all pairg g) € F® x F&=D such thatp(f, g) < 3D27.
Since these pairs are at mdstF, D27%)2, and recalling thafT; : f € F} is subgaussian
in the metricp, we can apply Lemma 8 using (13). Thus, for elch 1,

E[ max(T; — Tg)} <3D27%/2 InN(F, D2-¥)2.
.9
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Summing ovek, we obtain

E[supr] <> 3D27%/2 InN(F, D2°%)?
f k=1

o0
= 122 D2~ & /In N(F, D2-%)
k=1

D/2

<12 VINN,(F, ¢) de,

0

as desired. O
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