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Abstract. We investigate on-line prediction of individual sequences. Given a class of predictors, the goal is to
predict as well as the best predictor in the class, where the loss is measured by the self information (logarithmic)
loss function. The excess loss (regret) is closely related to the redundancy of the associated lossless universal
code. Using Shtarkov’s theorem and tools from empirical process theory, we prove a general upper bound on the
best possible (minimax) regret. The bound depends on certain metric properties of the class of predictors. We
apply the bound to both parametric and nonparametric classes of predictors. Finally, we point out a suboptimal
behavior of the popular Bayesian weighted average algorithm.
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1. Introduction

Assume that elements of an arbitrary sequencey1, . . . , yn are revealed one by one, where
the elementsyt belong to some setY, which, in the simplest case, is assumed to be finite. At
each timet = 1, . . . ,n, before revealing an elementyt , we are asked to assign a probability
mass functionpt onY and then observeyt incurring the logarithmic loss− ln pt (yt ). Our
total loss at the end is the sum of the losses suffered at each round. As we know the prefix
y1, . . . , yt−1 before choosing each probability assignmentpt , we may view eachpt as the
conditionalp(· | y1, . . . , yt−1) of some joint distributionp that we choose before the game
begins. We callp aprediction strategy. Any strategy for playing this game is equivalent to
a probability distribution onYn.

Our goal is to predict (almost) as well as the best strategy in a given “reference” set of
strategies. We will call “experts” the strategies in the reference set. In other words, we
intend to accumulate a loss not much larger than that of the best expert, regardless of what
the sequencey1, . . . , yn might be.

In this paper we investigate the minimum excess loss, with respect to the total loss of the
best expert, achievable on any sequence. This quantity, known as minimax regret (under
logarithmic loss), will turn out to depend on certain metric properties of the classF of
experts.
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It is well-known, via arithmetic coding (Rissanen, 1976), that every sequential prediction
strategy may be converted into a sequential lossless source code. Conversely, every uniquely
decodable code overYn defines a probability distribution. Thus, the prediction problem
under logarithmic loss is formally equivalent to the problem of sequential universal coding
in data compression. In this context, the subject of our study is the smallest achievable
worst-case redundancy of a sequential lossless code, with respect to a general class of
reference codes. The study of the worst-case regret was pioneered by Shtarkov (1987), and
later studied from various points of view by De Santiset al. (1988), Vovk (1990, 1998),
Haussler and Barron (1993), Weinberger, Merhav and Feder (1994), Yamanishi (1995),
Rissanen (1996), Haussler, Kivinen and Warmuth (1998), and others. Merhav and Feder
summarize the relevant history in their recent survey (Merhav & Feder, 1998).

The notion of minimax regret has natural applications in gambling and portfolio selection.
This connection was explored by Cover (1991), Feder (1991), Cover and Ordentlich (1996),
Barron and Xie (1996), and others.

Definitions. LetY be a measurable set equipped with aσ -algebraA andσ -finite measure
µ. Let n be any fixed positive integer denoting the length of the sequence or, equivalently,
the number of game rounds. Let〈Yn,A, ν〉 denote the probability space obtained as the
n-fold product of〈Y,A, µ〉. Throughout the paper, all densities onY andYn are understood
with respect to the measuresµ andν, respectively. Moreover, all integrals are computed
over the setYn unless explicitly specified. (IfY is a countable set, thenµ is usually the
counting measure, and all densities are understood as probabilities.)

For any integert ≥ 0, we useyt to denote a sequence oft elements fromY (where
y0 is the empty sequence). In this context, aprediction strategyis a densityp on Yn.
Upon observing the prefixyt−1, the strategyp uses the conditional densityp(· | yt−1) as a
probability assignment for the next elementyt of the sequence.

Fix a classF of “reference” strategies, called hereexperts. Theworst-case regretof a
strategyp (with respect to the classF) is defined by

Rn(p,F) = sup
yn∈Yn

(
n∑

t=1

ln
1

p(yt | yt−1)
− inf

f ∈F

n∑
t=1

ln
1

f (yt | yt−1)

)
or, equivalently, in terms of the joint densities

Rn(p,F) = sup
yn

ln
supF f (yn)

p(yn)
.

In other words,Rn(p,F) is the worst-case difference between the log-likelihood ofyn

under the densityp and the log-likelihood ofyn under its maximum likelihood estimator
(MLE) in the classF . The smallest worst-case regret achievable by any predictor is the
minimax regret

Rn(F) = inf
p

sup
yn

ln
supF f (yn)

p(yn)

where the infimum is taken over all densitiesp onYn.
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The main contribution of this paper is a general upper bound on the minimax regretRn(F)
in terms of some metric structure of the expert classF . In previous works, Rissanen (1996)
obtained asymptotical upper bounds for general parametric classes, which was generalized
considerably by Yamanishi (1998). Opper and Haussler (1997) were the first to prove
upper bounds for nonparametric classes. However, their bounds are restricted to classes of
staticexperts, that is, experts which correspond to product distributions. Our main result,
Theorem 3 below, extends both results in different ways: (1) in the parametric case we are
able to obtain nonasymptotical bounds under much simpler conditions than those needed
by Rissanen; (2) in the nonparametric case our results extend those of Opper and Haussler
to classes of arbitrary, not just static, experts.

The rest of the paper is organized as follows: In Section 2 we review Shtarkov’s optimal
prediction strategyp∗, whose regretRn(p∗,F ) is always equal to the minimax regret
Rn(F ). In Section 3 we establish our main result: a general upper bound on the minimax
regret for any class of experts. In Section 4 we apply our upper bound in concrete situations,
which could not be handled by any of the previous methods. Finally, in Section 5 we point
out that for certain classes of experts, prediction strategies based on mixture of experts may
have a regret which is significantly larger than that of Shtarkov’s optimal predictor.

2. Shtarkov’s theorem, mixture strategies

Shtarkov proved the remarkable fact that the density corresponding to the normalized MLE
achieves the minimax regret for any class of experts.

Proposition 1(Shtarkov, 1987). For any classF of experts, the density(normalized MLE)

p∗(yn) = supF f (yn)∫
supF f (xn) dν(xn)

is a minimax strategy, that is,

Rn(p
∗,F ) = Rn(F ).

Moreover, p∗ is an equalizer. That is, for all yn ∈ Yn

ln
supF f (yn)

p∗(yn)
=
∫

sup
F

ln f (xn) dν(xn) = Rn(F ). (1)

Note that the equalizer property (1) implies that the minimax regret may be expressed as

Rn(F ) =
∫ (

sup
F

ln
f (yn)

p∗(yn)

)
p∗(yn) dν(yn). (2)

The above expression is at the basis of the proof of the main result of this paper, see
Theorem 3 below.

Even though by Shtarkov’s theorem we may explicitly compute the minimax optimal
predictor, its practical use is limited by the hardness of computing each conditional
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p∗(y | yt ). The most common way to define more easily computable prediction strate-
gies is to consider mixture strategies of the form

p(yn) =
∫
2

fθ (y
n) dw(θ),

where2 is a set of parameters by which the experts are parametrized:F ={ fθ : θ ∈ 2},
andw is a probability measure over2. For an exhaustive survey of related results, we again
refer to Merhav and Feder (1998).

A simple example of a mixture strategy is whenF is a finite class andw is the uniform
distribution overF . In this case, the conditionals of the mixture strategy take the simple
form

p(y | yt−1) =
∑

f ∈F f (y | yt−1) f (yt−1)∑
g∈F g(yt−1)

. (3)

This is just the weighted average (WA) algorithm of De Santis, Markowski and
Wegman (1998), see also Haussler and Barron (1993), Haussler, Kivinen and Warmuth
(1998), Vovk (1998), and Yamanishi (1995).

Besides being computationally easier to handle thanp∗, mixture strategies are (in general)
universal, that is, their conditionals can be computed without knowing the sequence lengthn
in advance. On the other hand, there are simple finite classesF on which mixture strategies
perform very poorly compared to the optimal predictor. We will discuss this further in
Section 5.

We close this section by recalling the simple and elegant analysis of the regret of the WA
strategy. This result will be used in Section 3.

Proposition 2 (De Santis, Markowski & Wegman, 1988). For the WA strategy p and for
any finite classF of experts,

Rn(p,F)≤ ln |F | .

Proof: Let W1 = |F |, andWt =
∑

f ∈F f (yt−1), t ≥ 2. Then, on the one hand,

ln
Wn+1

W1
= ln

(∑
f ∈F

f (yn)

)
− ln |F | ≥ ln max

f ∈F
f (yn)− ln |F |,

and the other hand,

ln
Wn+1

W1
=

n∑
t=1

ln
Wt+1

Wt
=

n∑
t=1

ln

∑
f ∈F f (yt )∑

f ∈F f (yt−1)

=
n∑

t=1

ln p(yt | yt−1) = ln p(yn).
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Thus, we obtain

Rn(p,F)≤ sup
yn

ln
maxf ∈F f (yn)

p(yn)
≤ ln |F | . 2

3. Main result

We start with some definitions. The diameter of a totally bounded metric space(S, ρ) is

sup
x,y∈S

ρ(x, y).

Let T ⊆ S. Then for anyε > 0, theε-covering numberNρ(T, ε) of T is the cardinality of
the smallest subsetT ′ ⊆ Ssuch that

(∀x ∈ T)(∃x′ ∈ T ′) ρ(x, x′) ≤ ε.

To any classF of experts, we associate the metricd defined by

d( f, g) =
√√√√ n∑

t=1

sup
yt

(
ln f (yt | yt−1)− ln g(yt | yt−1)

)2
. (4)

We useN(F, ε) to denote theε-covering number ofF under the metricd.

Theorem 3. For any classF of experts,

Rn(F) ≤ inf
ε>0

(
ln N(F, ε)+ 24

∫ ε

0

√
ln N(F, δ)dδ

)
.

Remark. The main Theorem in Opper and Haussler (1997) has a similar form. In partic-
ular, they showed that if every expertf in the classF has the special formf (yt | yt−1) =
f ′(yt ) (i.e., every expertf corresponds to the product ofn identical distributionsf ′ on
Y—we call such expertsstatic), then for some constantK ,

Rn(F) ≤ inf
ε>0

(
ln Nρ(F, ε)+ K

∫ ε

0

√
ln Nρ(F, δ)dδ + nε2

)
(5)

whereρ is a metric onF . With Theorem 3 above, we show that in the upper bound (5)
the termnε2 is unnecessary. We also show that the metricρ can be replaced by another
metric d, defined in (4), which satisfiesNd(F, δ) ≤ Nρ(F, δ) for any δ > 0 and any
classF of static experts. (Note that the relative weakness of the bound (5) did not prevent
Opper and Haussler from obtaining upper bounds of the right order in their applications.)
Most importantly, however, we extend the result of Opper and Haussler (1997) to classes
of arbitrary, not just product experts. Our proof of Theorem 3 shows some similarities with
that of Opper and Haussler, in that we also use techniques from empirical process theory.
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Nevertheless, their proof does not seem to be extendable to handle the general case treated
here.

Remark. Theorem 3 requires that the expert class be finitely coverable in the metricd.
This in turn requires that all conditional densities be bounded away from zero. It is unclear
whether such a condition is necessary in general. In fact, for certain special parametric cases
like the family of all i.i.d. measures over a finite alphabet, such boundedness conditions are
not needed (see the remark after Corollary 6 for further discussion).

In order to prove the theorem, first we recall some well-known notions from empirical
process theory. A family

{Tf : f ∈ F}

of zero mean random variables (indexed by a metric space(F, ρ)) is calledsubgaussianin
the metricρ whenever

E
[
eλ(Tf−Tg)

] ≤ eλ
2ρ( f,g)2/2

holds for any f, g ∈ F andλ > 0. We also assume that the family issample continuous,
that is, for any sequencef1, f2, . . . ∈ F converging to somef ∈ F , we haveTfn − Tf → 0
almost surely.

The main tool used in our proofs is the following result of empirical process theory,
stating that the expected supremum over a subgaussian family is governed by geometrical
properties of the family in an appropriate metric. The result is a simple version of Dudley’s
classical metric entropy bound (see, e.g., Talagrand, 1996), whose proof is given in the
Appendix for completeness. Note that we ignore measurability issues here, by implicitly
assuming the measurability for all suprema.

Proposition 4. If {Tf : f ∈ F} is subgaussian and sample continuous in the metricρ, then

E
[
sup
F

Tf

]
≤ 12

∫ D/2

0

√
ln Nρ(F, ε)dε

where D is the diameter ofF .

We use Proposition 4 to obtain a first (weak) bound onRn(F) based on a direct analysis
of Sharkov’s strategyp∗. This will be later used as a tool to prove the stronger bound of
Theorem 3, which is based on the analysis of a variant ofp∗.

Lemma 5. For any classF of experts,

Rn(F )≤ 24
∫ D/2

0

√
ln N(F, ε)dε

where D is the diameter ofF .
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Proof: Using (2), we write

Rn(F) =
∫ (

sup
F

ln
f (yn)

p∗(yn)

)
p∗(yn) dν(yn)

= E
[

sup
F

ln
f (Yn)

p∗(Yn)

]
(whereYn = (Y1, . . . ,Yn) is a vector of random variables distributed

according top∗)

= E

[
sup
F

n∑
t=1

ln
f (Yt |Yt−1)

p∗(Yt |Yt−1)

]

≤ E

[
sup
F

n∑
t=1

(
ln

f (Y |Yt−1)

p∗(Yt |Yt−1)
− E

[
ln

f (Yt |Yt−1)

p∗(Yt |Yt−1)

∣∣∣∣Yt−1

])]

where the last step follows from the nonnegativity of the Kullback-Leibler divergence of
the conditional densities (see, e.g., Cover and Thomas (1991)):

E
[

ln
p∗(Yt |Yt−1 = yt−1)

f (Yt |Yt−1 = yt−1)

]
≥ 0. (6)

Now, for eachf ∈ F let

Tf (y
n) = 1

2

n∑
t=1

(
ln

f (yt | yt−1)

p∗(yt | yt−1)
− E

[
ln

f (Yt |Yt−1)

p∗(Yt |Yt−1)

∣∣∣∣Yt−1

])
so that we haveRn(F )≤ 2E[supF Tf ].

To apply Proposition 4, we need to show that{Tf : f ∈ F} is indeed a subgaussian family
under the metricd. (Sample continuity of the process is obvious.) To this end, note that
for any f, g ∈ F ,

Tf (y
n)− Tg(y

n) =
n∑

t=1

Zt (y
t ),

where

Zt (y
t ) = 1

2

(
ln

f (yt | yt−1)

g(yt | yt−1)
− E

[
ln

f (Yt |Yt−1 = yt−1)

g(Yt |Yt−1 = yt−1)

])
.

Now it is easy to see thatTf − Tg = Tf (yn) − Tg(yn) is a sum of bounded martingale
differences, that is, each termZt has zero conditional mean and range bounded by 2dt ( f, g).
Then the Hoeffding-Azuma inequality (1967) implies that, for allλ > 0,

E
[
eλ(Tf−Tg)

]≤ exp

(
λ2

2
d( f, g)2

)
.
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Thus, the family{Tf : f ∈ F} is indeed subgaussian. Hence, recalling thatRn(F) ≤
2E[supF Tf ] and applying Proposition 4 we obtain the statement of the lemma. 2

Lemma 5 provides a sharp bound on the regret ofp∗ if the diameterD ofF is very small.
However, inequality (6) becomes very loose for expertsf far away fromp∗. To avoid
such situations, we prove our general bound by analyzing the following prediction strategy
(different from p∗): F is partitioned into small subclasses and the minimax predictor is
calculated for each subclass (in which Lemma 5 may be applied). Finally, these predictors
are combined using the WA algorithm.

Proof: (Theorem 3) Fix an arbitraryε > 0 and letG be anε-covering ofF of minimum
sizeN = N(F, ε). LetF1, . . . ,FN be the cells of the Voronoi tessellation ofF , under the
metricd, having the elements ofG as cell centers (remember thatF andG live in the same
metric space, butG does not have to be a subset ofF). ThenF1, . . . ,FN is a partition of
F . For eachi = 1, . . . , N, let g(i ) be Shtarkov’s optimal predictor forFi ,

g(i )(yn) = supFi
f (yn)∫

supFi
f (xn) dν(xn)

.

Now let the predictorpε be the WA algorithm defined in (3) run over the set of “experts”
g(1), . . . , g(N). Clearly, Rn(F) ≤ infε>0 Rn(pε,F). So all we have to do is to bound the
regret ofpε.

To this end, fix anyyn ∈ Yn and letk = k(yn) be such that

ln sup
F

f (yn) = ln sup
Fk

f (yn) .

Then,

ln
supF f (yn)

pε(yn)
= ln

g(k)(yn)

pε(yn)
+ ln

supFk
f (yn)

g(k)(yn)
. (7)

As k = k(yn) ranges in{1, . . . , N}, by Proposition 2 we get

sup
yn

ln
g(k)(yn)

pε(yn)
≤ ln N. (8)

Furthermore

sup
yn

ln
supFk

f (yn)

g(k)(yn)
≤ max

1≤i≤N
sup
yn

ln
supFi

f (yn)

g(i )(yn)
= max

1≤i≤N
Rn(Fi ). (9)

Hence, combining (7), (8), and (9) we get

Rn(pε,F )≤ ln N + max
1≤i≤N

Rn(Fi ) . (10)
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Now note that the diameter of each element of the partitionF1, . . . ,FN is at most 2ε.
Hence, applying Lemma 5 to eachFi in (10) we find that

Rn(pε,F ) ≤ ln N + max
1≤i≤N

24
∫ ε

0

√
ln N(Fi , δ)dδ

≤ ln N(F, ε)+ 24
∫ ε

0

√
ln N(F, δ)dδ

concluding the proof. 2

Remark. Similarly to an analogous derivation in Opper and Haussler (1997), Theorem 3
could be also proven by direct manipulation of the minimax regret in the form

ln
∫

sup
F

f (yn) dν(yn).

This is done by partitioningF as in the proof of Theorem 3 and then replacing the derivation
of the bound (10) with the following:

Rn(F) = ln
∫

sup
F

f (yn) dν(yn)

≤ ln
∫ (

N∑
i=1

sup
Fi

f (yn)

)
dν(yn)

≤ ln N + max
1≤i≤N

ln
∫

sup
Fi

f (yn) dν(yn)

= ln N + max
1≤i≤N

ln Rn(Fi ).

Though a bit more concise, this proof ignores the algorithmical meaning of the right-hand
side of (10).

Remark. It is interesting to note that, while strategies likepε can have a regret close to
the optimal valueRn(F), p∗ is theuniquestrategy with regret equal toRn(F ), and this
is precisely due to the fact thatp∗ is an equalizer. To show this, pick anyF and as-
sume there existsp′ such thatp′ 6= p∗ and yetRn(p′,F )= Rn(p∗,F ) = Rn(F). As p is
normalized,p′ 6= p∗ implies thatp(yn)< p∗(yn) for someyn. Hence, supF f (yn)/p′(yn)>

supF f (yn)/p∗(yn) for this yn. But (2) implies that supF f (yn)/p∗(yn) = Rn(F) for
any yn. Hence supF f (yn)/p′(yn) > Rn(F ) contradicting the assumptionRn(p′,F ) =
Rn(F ).

4. Applications

In this Section we illustrate some natural applications of our upper bounds that, to the best
of our knowledge, could not be obtained with previous techniques.
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4.1. Parametric classes

As a first example, consider classesF such that there exist positive constantsk andc such
that for allε > 0,

ln N(F, ε)≤ k ln
c
√

n

ε
. (11)

This is the case for most “parametric” classes, that is, classes which can be parametrized
by a bounded subset ofRk in some “smooth” way. Asymptotic expressions forRn(F)
were established by Rissanen (1996) for such classes under certain general conditions.
In particular, Rissanen showed under his conditions thatRn(F) ≈ (k/2) ln n. However,
these conditions are difficult to check in some situations, and they are asymptotic in na-
ture. Theorem 3 allows us to derive a simple nonasymptotic bound under the sole metric
condition (11).

Corollary 6. Assume that the covering numbers of the classF satisfy(11). Then for each
n so large that

c
√

n ≥ 48
√

2
√

ln(c
√

n)/k,

we have

Rn(F) ≤ k

2
ln n+ k

2
ln

ln(c
√

n)

k
+ k ln c+ 6k.

Proof: Substituting (11) in the upper bound of Theorem 3, the first term of the expression
is bounded byk2 ln n+ k ln c− k ln ε. Then the second term may be bounded as follows:

24
∫ ε

0

√
ln N(F, δ)dδ ≤ 48c

√
kn
∫ ∞

an

x2e−x2
dx

(by substitutingx =
√

ln (c
√

n/δ) and writing

an =
√

ln (c
√

n/ε))

= 48c
√

kn

[
an

2c
√

n/ε
+ 1

2

∫ ∞
an

e−x2
dx

]
(by integrating by parts)

≤ 48c
√

kn

[
an

2c
√

n/ε
+ 1

2anc
√

n/ε

]
(by using the gaussian tail estimate

∫∞
t e−x2

dx

≤ e−t2
/(2t))

≤ 48
√

kanε (whenevereε ≤ c
√

n)

≤ 48
√

2ε
√

k ln(c
√

n) (wheneverε≥ 1/(c
√

n))
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The obtained upper bound is minimized for

ε = 1

48
√

2

√
k

ln(c
√

n)
,

which yields the desired result. 2

Remark. The main term(k/2) ln n is known to be the best possible for mostk-dimensional
parametric families such as the family of all i.i.d. measures over a finite alphabetY of k+1
elements [15], or, ifk = 2m, for the family of allm-th order stationary Markov measures
over a binary alphabet [19]. The lower-order term in the Corollary above is however not
the best possible in some cases, when much sharper estimates are available see, e.g., Barron
and Xie (1996) and Freund (1996). In fact, typical specific upperx bounds, have the form
(k/2) ln n + O(1) (see Barron & Xie, 1996; Freund, 1996; Rissanen, 1996). We do not
know if, in the generality treated here, the secondO(k ln ln n) term is necessary. Also,
Corollary 6 may only be used if all conditional densities are bounded away from zero. For
example, in the case of the examples mentioned above, we need to restrict the range of the
parameters so that all probabilities become bounded away from zero. Such condition is
not necessary in some of the parametric examples mentioned above. For example, Barron
and Xie (1996) and Freund (1996) do not need any restriction whenF is the class of all
i.i.d. measures over a finite alphabetY of k + 1 elements. Note, however, that to obtain
his general parametric bound, Rissanen assumes that the Fisher information is uniformly
bounded away from zero, which, in specific cases, leads to a similar restriction of the class
as the one we implicitly need by assuming (11). On the other hand, the general condition
under which the Corollary holds makes it useful in situations where all previously known
techniques fail. This is illustrated in the next simple example.

Example: Fading-memory predictors.Let Y = {0, 1}, and consider the one-parameter
classF of distributions on{0, 1}n containing all expertsf (a) with a ∈ [0, 1], where each
f (a) is defined by its conditionals as:f (a)1 (1)= 1/2, f (a)2 (1 | y1)= y1, and

f (a)t (1 | yt−1)= 1

t − 1

t−1∑
i=1

yi

(
1+ a(2i − t)

t − 2

)
,

for all yt−1 ∈ {0, 1}t−1 and for allt > 2. In other words, each expert predicts according to a
weighted average of the past outcomes with linearly decaying weights as we go back in the
past. The parametera determines the slope of the decay. Unfortunately, Theorem 3 cannot
handle this class because the values off (a)t (1 | yt−1) and f (a)t (0 | yt−1) may be arbitrarily
close to zero, and therefore the covering numbers of this class with respect to the metricd
are infinite. To avoid this difficulty, we slightly modify the experts by considering the class
G of all expertsg of the form

g(a)t (1 | yt−1) = τ( f (a)t (1 | yt−1)
)
,
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where

τ(x) =


x if x ∈ [δ, 1− δ]
δ if x < δ

1− δ if x > 1− δ

for some fixed 0<δ<1/2. Now clearly, for allt ≥ 1, anda, b ∈ [0, 1],

dt
(
g(a), g(b)

) = max
yt−1∈{0,1}t−1

∣∣ ln g(a)t (1 | yt−1)− ln g(b)t (1 | yt−1)
∣∣

≤ 1

δ
max

yt−1∈{0,1}t−1

∣∣g(a)t (1 | yt−1)− g(b)t (1 | yt−1)
∣∣

≤ 1

δ
max

yt−1∈{0,1}t−1

∣∣ f (a)t (1 | yt−1)− f (b)t (1 | yt−1)
∣∣

= 1

δ
max

yt−1∈{0,1}t−1

∣∣∣∣∣ 1

t − 1

t−1∑
i=1

yi
(a− b)(2i − t)

t − 2

∣∣∣∣∣
= 1

δ
max

yt−1∈{0,1}t−1

∣∣∣∣∣(a− b)
1

t − 1

t−1∑
i=1

yi
(2i − t)

t − 2

∣∣∣∣∣
≤ 1

δ
max

yt−1∈{0,1}t−1
|a− b|

∣∣∣∣∣ 1

t − 1

t−1∑
i=1

yi

∣∣∣∣∣
≤ |a− b|

δ
.

Therefore, we immediately see that for allε > 0,

ln N(G, ε) ≤ ln

√
n

εδ
,

so Corollary 6 yields

Rn(G)≤ 1

2
ln n+ 1

2
ln ln

√
n

δ
+ ln

1

δ
+ 6.

Note that this class cannot be handled by Rissanen’s asymptotic expansion, which requires
that the MLE in the class satisfy a uniform central limit theorem condition. In fact, the
experts inG are nonstationary, and reach far back in the past, so proving a central limit
theorem for the MLE ofa would be extremely difficult (let alone a uniform one!), even if
we had known what the MLE was.

4.2. Nonparametric classes

Next, we illustrate on two examples how Theorem 3 can be applied for very large, nonpara-
metric classes. The first example shows that nontrivial bounds may be obtained even for
utterly huge classes of predictors.



WORST-CASE BOUNDS FOR THE LOGARITHMIC LOSS 259

Example: Lipschitz-Markov predictors.Assume, for simplicity, that the alphabet isY =
[0, 1]. Let C be a class of densities (with respect to the Lebesgue measure) on [0, 1] such
that its covering numberNρ(C, ε) with respect to the metric

ρ(p, p′) = sup
x∈[0,1]

| ln p(x)− ln p′(x) |

satisfies lnNρ(C, ε)≤ cε−a for somea, c> 0. (An example of a nonparametric class of
densities satisfying this condition is the class of all Lipschitz densities which are uniformly
bounded away from zero, a class also considered in Opper and Haussler (1997).)

Now consider the classF of all k-th order Markov measures on [0, 1]n such that for all
t ≤ n and

yt−1
t−k = (yt−k, . . . , yt−1) ∈ [0, 1]k,

the conditional densities satisfyft (· | yt−1
t−k) ∈ C, and moreover, for allt ≤ n andyt−1

t−k , z
t−1
t−k ∈

[0, 1]k,

sup
x∈[0,1]

∣∣ ln ft
(
x
∣∣ yt−1

t−k

)− ln ft
(
x
∣∣ zt−1

t−k

)∣∣≤ max
t−k≤ s≤ t−1

|ys− zs|.

The last condition requires that a small change in the past does not cause a drastic change
in the log of the conditional density. Notice that all these are quite natural smoothness
assumptions, and the resulting class of experts is very large.

To use Theorem 3 it suffices to observe thatNF (ε) may easily be bounded by

NF (ε)≤ [NC(ε/2)]
(c1
√

n/ε)k ,

wherec1 is a positive constant. Now it is a matter of routine calculation to obtain the bound

Rn(F) = O(n
a+k

2+a+k ).

Example: Monotone predictors.Let Y = {0, 1} be a binary alphabet, and consider the
classF of all experts f = ∏t ft such that f (1 | yt−1)= ft (1) ∈ [δ, 1 − δ], whereδ ∈
(0, 1/2) is some fixed constant, and for eacht = 2, 3, . . . ,n, ft (1)≥ ft−1(1). In other
words,F contains allstaticexperts (i.e., experts which predict independently of the past
data) which assign a probability to the outcome “1” in a monotonically increasing manner.
This class is again “nonparametric”, but here the richness of the class is not due to the
richness of the conditional densities, but rather to the nonstationarity of the experts inF .
To estimate the covering number ofF , consider the finite subclassG of F containing only
those monotone expertsg= ∏t gt which take values of the formgt (1)= δ+ (i /k)(1−2δ),
i = 0, . . . , k, wherek is a positive integer to be specified later. It is easy to see that
|G| = ( n+k

k ) ≤ (2n)k if k ≤ n, and|G| ≤ 2k otherwise. On the other hand, for anyf ∈ F ,
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if g is the expert inG which is closest tof , then for eacht ≤ n,

max
y∈{0,1}

| ln ft (y)− ln gt (y) | ≤ 1

δ
max

y∈{0,1}
| ft (y)− gt (y) |

= 1

δ
| ft (1)− gt (1) |

≤ 1

δk
.

Thus,d( f, g) ≤ √n/(δk), where the metricd is defined in (4). By takingk = √n/(δε), it
follows that the covering number ofF is bounded as

N(F, ε) ≤
{
(2n)

√
n/(δε) if ε ≥ 1

δ
√

n

2
√

n/(δε) otherwise.

Substituting this bound into Theorem 3, it is a matter of straightforward calculation to obtain

Rn(F ) = O(n1/3δ−2/3 ln2/3 n).

Note that the radius optimizing the bound of Theorem 3 is aboutε ≈ n1/6δ−1/3 ln1/3 n.

5. Suboptimality of mixture predictors

As we have pointed it out in the introduction, instead of the minimax predictor given by
Proposition 1, often mixture predictors are used. In some cases, the worst-case regret of mix-
ture predictors, in particular, the WA predictor (3), is very close to the optimal valueRn(F ),
see Barron and Xie (1996), Freund (1996), and Haussler, Kivinen and Warmuth (1998).
The purpose of this section is to point out that this is not necessarily so. In fact, even for
very simple classes of static experts, the ratio of the minimax regret of the WA algorithm
and that of the optimal algorithm can be arbitrarily large. Note that this does not contradict
Theorem 3, where the WA algorithm was run on a special set of predictors derived fromF ,
instead of being run directly on the expert classF , as prescribed by (3).

Theorem 7. For every n> 1 there exists a classFn of two static experts such that, if p
denotes the predictor defined in(3), then

Rn(p,Fn)

Rn(Fn)
≥ c
√

n,

where c is a universal constant.

Proof: Let Fn contain the two expertsf, g defined over the binary alphabetY = {0, 1}
by

f (1 | yt−1) = 1

2
and g(1 | yt−1) = 1

2
+ 1

2n
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for all t ≤ n andyt−1 ∈ {0, 1}t−1. We may easily estimate the minimax regretRn(Fn) using
Lemma 5. The diameter ofFn is easily seen to be

D = d( f, g) = √n ln

(
1+ 1

n

)
≤ 1√

n
.

Also, sinceN(Fn, ε)≤ 2 for all ε > 0, Lemma 5 provides the upper bound

Rn(Fn) ≤ 12
√

ln 2√
n

. (12)

On the other hand, the definition of the WA algorithm in (3) shows that

p(yn) = f (yn)+ g(yn)

2
.

The relative loss ofp is

Rn(p,Fn) = ln max
yn

max( f (yn), g(yn))

p(yn)

= ln max
yn

2 max( f (yn), g(yn))

f (yn)+ g(yn)

≥ ln max
yn

2 f (yn)

f (yn)+ g(yn)

= ln max
0≤k≤n

2
2−n

2−n + ( 1
2 − 1

2n

)k( 1
2 + 1

2n

)n−k

= ln max
0≤k≤n

2

1+ (1− 1
n

)k(
1+ 1

n

)n−k

= ln
2

1+ (1− 1
n

)n
≥ ln

2

1+ 1
e

.

Comparing this lower bound with (12), we obtain the statement of the theorem with
c = ln ( 2

1+ 1
e
)/12
√

ln 2≈ 0.038. 2

Appendix

To prove Proposition 4, we use the following simple lemma, whose elegant proof was shown
to one of us by Pascal Massart.
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Lemma 8. Letσ > 0, and let X1, . . . , XN be real-valued random variables such that for
all λ > 0 and1≤ i ≤ N, E[eλXi ] ≤ eλ

2σ 2/2. Then

E
[

max
i≤N

Xi

]
≤ σ
√

2 ln N.

Proof: By Jensen’s inequality, for allλ > 0,

eλE[maxi≤N Xi ] = E[eλmaxi≤N Xi ] = E
[

max
i≤N

eλXi

]
≤

N∑
i=1

E[eλXi ] ≤ Neλ
2σ 2/2.

Thus,

E
[

max
i≤N

Xi

]
≤ ln N

λ
+ λσ

2

2
,

and takingλ =
√

2 ln N/σ 2 yields the result. 2

Proof: (Proposition 4) For eachk= 0, 1, 2, . . ., letF (k) be a minimal cover ofF of radius
D2−k. Note that|F (k)| = N(F, D2−k). Denote the unique element ofF (0) by f0.

LetÄ be the common domain where the r.v.’sTf , f ∈ F , are defined. Pickω ∈ Ä and
let f ∗ ∈F be such that supf ∈F Tf (ω) = Tf ∗(ω). (Here we implicitly assume that such an
element exists. The modification of the proof for the general case is straightforward.)

For eachk ≥ 0, let f ∗k denote an element ofF (k) whose distance tof ∗ is minimal.
Clearly,ρ( f ∗, f ∗k ) ≤ D2−k, and therefore, by the triangle inequality, for eachk ≥ 1,

ρ( f ∗k−1, f ∗k )≤ ρ( f ∗, f ∗k )+ ρ( f ∗, f ∗k−1)≤ 3D2−k. (13)

Clearly, limk→∞ f ∗k = f ∗, and so by the sample continuity of the process,

sup
f

Tf (ω) = Tf ∗(ω) = Tf0(ω)+
∞∑

k=1

(
Tf ∗k (ω)− Tf ∗k−1

(ω)
)
,

and therefore

E
[

sup
f

Tf

]
≤
∞∑

k=1

E
[

max
f,g
(Tf − Tg)

]
where the max is taken over all pairs( f, g) ∈ F (k) × F (k−1) such thatρ( f, g) ≤ 3D2−k.

Since these pairs are at mostN(F, D2−k)2, and recalling that{Tf : f ∈F} is subgaussian
in the metricρ, we can apply Lemma 8 using (13). Thus, for eachk ≥ 1,

E
[

max
f,g
(Tf − Tg)

]
≤ 3D2−k

√
2 ln N(F, D2−k)2.
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Summing overk, we obtain

E
[

sup
f

Tf

]
≤
∞∑

k=1

3D2−k
√

2 ln N(F, D2−k)2

= 12
∞∑

k=1

D2−(k+1)
√

ln N(F, D2−k)

≤ 12
∫ D/2

0

√
ln Nρ(F, ε)dε,

as desired. 2
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